

On the Quality of Quality Models

MASTER THESIS

J.H. Hegeman

J.H. Hegeman – Master Thesis – Unrestricted version 2

J.H. Hegeman – Master Thesis – Unrestricted version 3

Author Erik Hegeman

MSc. student Computer Science,

track Information Systems Engineering

Dept. of EEMCS, University of Twente

Student number 0086215

j.h.hegeman@alumnus.utwente.nl

+31 647848024

Graduation Committee

University members Pascal van Eck

 Information Systems chair, dept. of EEMCS, University of Twente

 p.a.t.vaneck@utwente.nl

 +31 534894648

 Mariëlle Stoelinga

 Formal Methods & Tools chair, dept. of EEMCS, University of Twente

 m.a.i.stoelinga@utwente.nl

 +31 534893773

External members Nico Nijenhuis (assignment)

Managed IT Services, Info Support BV

nicon@infosupport.com

+31 647504890

 Marco Pil (technical supervision)

Knowledge Center, Info Support BV

marcop@infosupport.com

+31 645478915

Process support Barbara Engel

HRM, Info Support BV

barbarae@infosupport.com

+31 652671371

Document availability Unrestricted

Revision number 3.71

Release date July 4, 2011

J.H. Hegeman – Master Thesis – Unrestricted version 4

“Measure what is measurable, and make measurable what is not so”

Galileo Galilei (1564-1642)

J.H. Hegeman – Master Thesis – Unrestricted version 5

Management Summary

This project investigates the usability of the SQALE method at software company Info Support BV.

This method allows Info Support to measure the quality of Java and C# source code. We learned that

SQALE, as implemented in the Sonar tool, provides a workable method to perform this quality

assessment for projects of both languages.

Reason for Info Support to start this project was a wish to be able to assess the quality of customers’

projects before the Managed IT Services department contracts customers for management services.

The ability allows Info Support to decide which services can be delivered for which price.

The investigation was performed by correlating SQALE quality judgments of 9 Info Support managed

software projects with two types of validation data:

• A survey was conducted, in which 11 experts (Info Support Managed IT Services employees)

rated the sample projects they had knowledge of. This resulted in 22 project gradings.

• An investigation was conducted of the time spent on resolving incidents and problems in the

sample projects in 2010. This resulted in a value (in hours) for each project, which we divided

by the project size (in KLOC) for scaling. The resulting value is an overall quality indicator.

In a proof of concept, the Sonar tool and SQALE method were setup and used to assess the source

code of the 9 sample projects. We calculated the correlation of the SQALE measurements with the

expert opinions and financial quality indicators. We performed this analysis with an initial (default)

SQALE configuration as well as with a calibrated SQALE configuration in which Info Support

programming rules were used. The observed Pearson correlation values are displayed in Table 1. In

all cases, we expected a value equal to or larger than +0.30.

 Initial configuration Calibrated

Sonar results vs. Survey results +0.41 +0.50

Sonar results vs. Financial quality +0.34 +0.36
Table 1 Main Pearson correlation coefficients: Sonar measurements vs. validation data

This leads to the conclusion that in general, the methods provides quality measurements that are

valid. A number of side nodes should be made:

1. The method configuration is very flexible, and configuring is therefore a difficult task. This

thesis suggests a number of options to enhance the configuration and possibly further

increase correlation with validation data;

2. A higher correlation coefficient was found to not always imply a better configuration quality.

A starting-point configuration, consistent with the Endeavour rule set, and the use of a

continuous improvement procedure is suggested.

The choice for the SQALE model and Sonar tool followed from a literature review and free search on

the internet, respectively. The method allows Info Support to not only determine the overall quality,

but also provides a rating for four important quality aspects, consistent with ISO 9126:

• Analyzability (referred to as Maintainability in SQALE): about the readability and

understandability of application source code;

• Changeability: about the effort needed to change an application;

J.H. Hegeman – Master Thesis – Unrestricted version 6

• Reliability: about the robustness of an application, amongst which exception handling, input

error detection and thread handling;

• Testability: about the effort needed to test changes in a system.

As a by-product of this project, a number of recommendations for Info Support was formulated:

1. Use existing tools and do not attempt to imitate them by in-house development, as the latter

option is more expensive and has more risks;

2. Keep an eye open for better tools since the SQALE method is supported by multiple tools and

the tool market is young and developing; better options than Sonar may become available;

3. Use appropriate (virtual) hardware to run software analysis on. The analysis process requires

quite a lot of computer power. Therefore, appropriate hardware is a requirement for

effective use of the method, especially when the method becomes part of a non-incidental

process (i.e. nightly builds). Bottlenecks are, in order of priority, CPU, disk I/O and RAM;

4. Integrate the method in PDC nightly builds: to support the alignment of the Professional

Development Center and Managed IT Services Department, the method can be made part of

the build cycle of PDC projects. This allows developers to better assure maintainability of

projects that are being developed and are to become managed projects of MITS;

5. Sell Quality Assessment as a Service: quality assessments created by SQALE can be made

‘SIG-compatible’, which provides the business opportunity to Info Support to sell software

source code quality assessments as a service to customers. Resulting quality judgments will

be comparable to SIG audit results;

6. Assign method responsibility and authority: the use of SQALE requires some knowledge, and

also an authority that is capable of taking non-trivial decisions mainly concerning the

configuration of the quality model. Therefore, it is recommended to assign the responsibility

for and authority of the use of SQALE at Info Support to a specific ‘project owner’;

7. Improve the MITS incident registration procedure. Details of this recommendation are

confidential.

Additionally, two proposals for SQALE model extensions were formulated:

1. A proposal for introducing the concept of rule violation severeness in the quality model;

2. A proposal for a method to balance SQALE indexes over quality characteristics and

languages.

To further elaborate upon the topic of the quality of quality models, a number of ideas that are

deemed interesting but lay beyond the scope of this project were formulated:

1. Investigate the possibility to create a ‘benchmarking repository’ that can be used for the

calibration of the quality model. Such a repository is also used by the Software Improvement

Group. The question, in this case, would be if and how such a repository can contribute to

the quality of the SQALE configuration calibration procedure, specifically for Info Support or

in general.

2. Further Investigate the nature and characteristics of the mathematical relationship between

Lines of Code in a software project and its number of Function Points.

Preface

J.H. Hegeman – Master Thesis – Unrestricted version 7

In 2004, I came to the University of Twente to study Business Information Technology. It would take

some time for me to realize that at that point I didn’t actually have any clue what it meant to be a

University student. Although my studies went quite well and I passed all my first year courses, it was

only at the end of my second year when I moved from Enter to Enschede and started to participate in

extracurricular activities. I also started a second Bachelor’s program in Computer Science. These

steps turned out to have a major impact on my life as a student.

The next few years would become a heavy but pleasant mixture of courses, projects, meetings,

reading and writing enormous amounts of documents and e-mails and of course more than

occasional drinks. I managed to combine studying and other things I did quite well, so six and a half

years after coming to the University, I found myself having finished all courses. It was time for me to

graduate. I wanted to do a graduation assignment outside the University, since I didn’t have any

‘external’ experience yet.

Directly after my final exams, I started my graduation project at Info Support. I decided not to move

to the Veenendaal area, since travel times were acceptable and my social life was still in Enschede. It

was hard for me to get used to spending days reading, writing and thinking, since I missed the action

and variety of the life I had had for the past few years. I’m not someone who likes to work alone. It

seemed to me to be quite inefficient to spent 40 hours a week on just one research project,

especially since it involves a lot of thinking that I would normally do while doing ‘actual work’ that

preferably provides some kind of tangible output at the end of the day. Fortunately, the project went

quite well and I was able to more or less ignore this mismatch between the way of working and the

way I prefer to work. I also was quite satisfied with the facilities and support during the project.

These things allowed me to stay on schedule. After 3 months, I was able to draw the first conclusions

from my research and to elaborate upon them, which announced a project phase that I found far

more interesting than the data collection I had had to do in the previous two months. I enjoyed

discussions about interpretation and implications of results and was able to finish the project soon

afterwards.

Aside from capabilities and knowledge, the last few years have brought me lots of good memories. I

especially enjoyed my board and committee functions, in which I got to know many different people

and worked together with them to accomplish a diversity of things and also had a lot of fun. My

advice to any student would be to choose things to do besides studying that are both pleasant and

useful for the academic community and personal development.

Last but not least, I would like to thank my family and friends who have supported my throughout my

studies. Without their help I would not have been able to accomplish the things I have in the last

years. I also would like to thank the members of my graduation committee, who provided useful

guidance and feedback, contributing to a graduation process that I experienced as quite smooth.

Erik Hegeman

Enschede, June 21, 2011

J.H. Hegeman – Master Thesis – Unrestricted version 8

J.H. Hegeman – Master Thesis – Unrestricted version 9

Table of Contents

1. Introduction ... 13

1.1. Problem Statement ... 13

1.2. Goal statement .. 13

1.3. Scope ... 13

1.4. Research Question .. 14

1.4.1. Definitions ... 14

1.4.2. Question formulation .. 15

1.5. Document Structure .. 16

1.6. Related Work ... 16

1.7. Conclusion ... 17

2. Theoretical Background... 19

2.1. Info Support Context ... 19

2.1.1. On Software Engineering and Management at Info Support .. 19

2.1.2. Earlier Work at Info Support ... 20

2.2. Quality Model Terminology ... 20

2.3. On the ISO 25000 standard ... 20

2.3.1. The ISO 9126 component .. 21

2.3.2. The ISO 14598 component .. 23

2.4. On Quality Models ... 23

2.4.1. McCal Model.. 24

2.4.2. Boehm Model .. 24

2.4.3. Dromey Model ... 25

2.4.4. SIG model .. 25

2.4.5. Qualixo Model ... 27

2.4.6. SQALE Model ... 29

2.5. Discussion .. 34

2.6. On Quality Assessment Tools .. 35

2.6.1. Comparison Criteria ... 35

2.6.2. Tools .. 37

2.6.3. Comparison & Conclusion ... 39

2.7. On Financial Indicators for Software Quality .. 41

3. Research Design .. 43

3.1. Project Subset Selection .. 44

J.H. Hegeman – Master Thesis – Unrestricted version 10

3.2. Expert Opinion Phase .. 45

3.2.1. Employee selection ... 45

3.2.2. Survey Design .. 45

3.2.3. Survey Conduction... 47

3.2.4. Survey Conclusions .. 48

3.3. Financial Investigation Phase .. 48

3.3.1. Financial Indicator Calculations ... 48

3.4. Proof of Concept Phase ... 51

3.4.1. Proof of Concept Setup ... 51

3.4.2. Software Quality Assessment .. 52

3.4.3. Assessment Result Analysis ... 52

3.5. Research Results Phase ... 52

3.5.1. Correlation Calculations .. 52

3.5.2. Statistical Significance ... 53

3.5.3. Procedure .. 54

3.5.4. Calibrating the Quality Model Configuration .. 55

4. Validation Data Collection Results: Expert Opinions ... 61

4.1. Data Collection Process ... 61

4.2. Expert Project Ratings ... 61

4.3. Characteristic Correlations .. 62

5. Validation Data Collection Results: Financial Indicators ... 63

6. Proof of Concept.. 64

6.1. SQALE implementation in Sonar ... 64

6.1.1. Implementation characteristics ... 64

6.1.2. Mapping of SQALE characteristics to quality definition .. 64

6.1.3. Relationship with ISO 9126 ... 66

6.2. Setting up the Proof of Concept .. 67

6.2.1. Initial Sonar Setup attempt ... 67

6.2.2. Sonar SQALE Quality Model Settings... 69

6.2.3. .Net Project Setup ... 69

6.2.4. Initial Quality Model Configuration Calibration & Setup Test 70

7. Analysis & Optimization .. 74

7.1. Validating the Validation data ... 74

7.2. Initial Validation Results .. 75

J.H. Hegeman – Master Thesis – Unrestricted version 11

7.2.1. Calculating Correlations .. 75

7.2.2. Sensitivity .. 76

7.2.3. Correlations of Characteristics .. 77

7.3. Calibrating the configuration: applying Info Support rule set ... 78

7.3.1. Reconfiguring the rule set ... 78

7.3.2. Reconfiguring the rule – characteristic mapping .. 78

7.4. Reflection... 81

7.4.1. What is an optimal configuration? .. 81

7.4.2. Why do correlations on characteristic-level remain low?... 82

7.4.3. On the Suitability of Sonar... 82

7.5. SQALE Extension Proposals ... 82

7.5.1. Balancing the Ratings .. 83

7.5.2. Adding Weights to Rule Violations .. 85

8. Recommendations for Info Support .. 88

8.1. Do not try this at home ... 88

8.2. Keep an eye open for newer and better tools .. 88

8.3. Run tools on appropriate hardware .. 88

8.4. Integrate analysis in PDC Nightly Builds .. 89

8.5. Sell Quality Assessment as a service ... 89

8.6. Assign method responsibility and authority ... 90

8.7. Improve incident registration procedure .. 90

9. Discussion .. 91

9.1. What the Method Does Not Do .. 91

9.1.1. Functionality Verification .. 91

9.1.2. Test Quality .. 91

9.1.3. Non-source code components .. 92

9.1.4. Process metrics .. 92

9.2. On Correlation-limiting factors .. 92

9.3. Generalizability of Research Results ... 93

9.3.1. Background information and Tool selection ... 93

9.3.2. Research Design .. 93

9.3.3. Validation Results .. 94

9.4. The Remediation Cost Paradigm ... 94

9.5. On the Concept of Quality ... 95

J.H. Hegeman – Master Thesis – Unrestricted version 12

10. Future Research... 99

10.1. Benchmark-based calibration .. 99

10.2. Lines of Code versus Function Points .. 99

11. Conclusion ... 101

11.1. Answers to the main Research Questions ... 101

11.2. Proof of Concept Setup ... 101

11.2.1. Initial Correlations ... 101

11.2.2. Optimizing the Configuration .. 101

11.3. Obtaining validation data .. 102

11.3.1. Expert Opinions ... 102

11.3.2. Financial Investigation ... 102

11.4. Other Findings ... 102

11.4.1. Recommendations for Info Support .. 102

11.4.2. Enhancing the SQALE model ... 103

11.5. Preliminary Research ... 103

A. Bibliography ... 105

B. Lists of tables and figures .. 109

List of Tables .. 109

List of Figures ... 110

C. Digital Resources ... 111

D. Sonar Dashboard Example .. 113

E. Survey Design .. 115

F. Survey Results – raw result overview [CONFIDENTIAL] .. 117

G. Method Setup notes .. 119

1. General Setup .. 119

2. Setup Test .. 121

3. General Usage ... 121

4. Default Pom.XML for .Net projects ... 123

H. PoC Technical Setup Overview .. 125

I. SQALE configuration overview .. 127

J. List of installed software on the PoC VM .. 149

K. Project identifier list [CONFIDENTIAL] .. 151

J.H. Hegeman – Master Thesis – Unrestricted version 13

1. Introduction
In this project, we attempted to answer the research question “how do Sonar SQALE quality

assessment results of projects correlate to Info Support experiences and expectations?” This

introductory chapter provides information on the problem, scope and shows how this research

question was formulated.

1.1. Problem Statement

The problem that was reason for Info Support - see background information section 2.1 for more

information about the company - to formulate the initial research assignment, is a lack of insight in

what is or is not a suitable way of dealing with automated software quality assessment.

The assignment was formulated by the Managed IT Services – ‘MITS’ – department of Info Support,

which is responsible for delivering software management services (defined in paragraph 1.4.1) to

customers as well as Info Support itself. Software, possibly developed outside Info Support, is at

some point in time offered to MITS to be managed. To be able to assess this software and determine

which management services can be offered for which price, a method is needed to qualify relevant

quality aspects during the intake procedure. This does not mean, however, that the results of this

research are only relevant for MITS itself. Monitoring of quality, specifically the maintainability

aspect, is also relevant during the software development phase. The assessment method therefore is

also intended to eventually be used at the Professional Development Center – ‘PDC’ – at Info

Support, to increase the maintainability of software and allow for easy management after the initial

development phase has finished, saving resources in the long term.

A specific requirement of the quality assessment method to be performed is that, for any given

project, analysis results in at least an index for ‘quality’ and ‘maintainability’. This index is a value on

a certain scale, The quality index should incorporate at least a score for unit tests, unit test coverage,

standard compliance and complexity. The maintainability index should incorporate at least

analyzability, changeability, stability and testability. In the literature, maintainability is usually

considered to be a specific aspect of quality, as will be explained later. A definition of quality will be

chosen that incorporates this requirements but also conforms to ISO 9126, see definition paragraph

1.4.1.

1.2. Goal statement

The goal of this project follows from the problem statement, and is to develop and validate a

method, applicable in the software management environment of Info Support, to automatically and

quantitatively determine the quality and maintainability of software, given the software’s source

code. Research questions that need to be answered in order to reach this goal are defined in

paragraph 1.4. The design of the research that will allow us to reach this goal is defined in chapter 3.

1.3. Scope

The description of the research presented thus far is still quite broad, therefore a number of

constraints has been identified, i.e. limitations by impossibilities, and defined, i.e. by choices made to

scope the research. This way, the focus of this research has been narrowed down to something new,

relevant and realizable. The following constraints apply:

J.H. Hegeman – Master Thesis – Unrestricted version 14

• The set of software source code languages is limited to Java and C#, the languages used in

software developed or maintained at Info Support. Tools used in this research need to

support these languages.

• This research is not be about defining our own quality standard or model; we use the ISO

9126 standard and existing quality models, used by existing tools, as a foundation. This ISO-

standard is explained in the Background section. Using this standard, we try to identify tools

that conform to both the standard, the language support constraint, and are mature enough

to be used in a production environment. Although this implies that we will not write our own

software, we leave the possibility open that, as a result of this research, we will recommend

to do so.

• Specifically, we focus on the ‘maintainability’ aspect of the ISO-standard. Reason for this is

that this aspect is considered most relevant in the context of the research assignment as

formulated by Info Support. The definition we use for ‘quality’ in this research expresses this

and can be found in paragraph 1.4.1.

• The number of tools used in the Proof of Concept phase is limited to one, due to resource

(time) constraints and the lack of available alternatives to the selected tool. Background

information about tools can be found in paragraph 2.6.

1.4. Research Question

1.4.1. Definitions

To be able to understand and interpret the research questions and their relations as formulated in

paragraph 1.4.2, we first need to define the terminology used in the formulation. The following terms

are used in the research questions and throughout the rest of this thesis using a specific meaning

defined in this section. Terms are presented in alphabetical order.

Term Definition

Expectations Expectations are quantified formulations of what is expected to be the value

of an element from the quality information tree (see ‘Quality Information’),

from a specific perspective. For example, the results of the second research

phase (financial investigations) is referred to as expectations.

Experiences Experiences are opinions of Professionals on the value of elements from the

quality information tree. Specifically, we use experiences to refer to the survey

results of the first phase of this research.

Professionals Professionals are employees of Info Support that are directly involved in

software management, i.e. employees of the Managed IT services

department.

Quality

information

Quality information is quantitatively expressed information about the quality

of software source code, expressed in quality indicators values calculated from

source code metric measurements using a quality model (see ‘Quality model’).

Quality indicators used in this research conform to ISO 9126 and are a sub tree

of the indicators defined in this standard, defined in consultation with Info

Support supervision. Elements from the tree are also referred to as ‘quality

aspects’.

J.H. Hegeman – Master Thesis – Unrestricted version 15

o Maintainability

� Analyzability

� Changeability

� Stability

� Testability

• Unit Test run result

• Unit Test Coverage

• Complexity

� Maintainability Compliance

(‘maintainability compliance’ indicates the extent to which software meets

programming guidelines and conventions. This is also referred to as ‘standard

compliance’)

Quality model A Quality model is a mathematical model that determines the value of quality

indicators (see ‘Quality Information’), by mapping and aggregating source

code measurements to quality indicators. Quality models can implement a

standard, for example the ISO 9126 standard.

Software

Management

The set of activities conducted by the Info Support Managed IT Services

Department, which includes, for example, hosting, guaranteeing availability,

incident management, and performing updates, repairs and modifications.

Table 2 Research Question Terminology Table

1.4.2. Question formulation

Based upon the research goal and scope, the main research question was initially formulated as

follows:

To which extend can software tools, incorporating quality models, provide quality information that

matches Info Support experiences and expectations?

1. How is software quality being experienced by Info Support professionals?

2. How can software quality be expressed in financial terms, given historic data?

3. How can software tools be used to assess software source code quality?

The main research question contains the phrase ‘to which extend’. To make the answer measurable,

we use quantitative analysis of the result of all sub questions. We now flash-forward to the

theoretical background and research design sections and narrow down the research questions. We

use the following information:

- The software tool selection phase identified Sonar to be the tool of choice (2.6.2)

- The quality model selection phase identified SQALE to be the model of choice (2.4.6)

- The ‘extend of the match’ is calculated by correlations (3.5.1)

- In the survey to be conducted we ask experts to rate projects on SQALE characteristics (3.2)

- In the financial investigation phase we determine a financial quality indicator values (3.3)

- Hypotheses about the correlations between the results of the sub questions are formulated

in research design section 3.5

This information leads to the following reformulation:

J.H. Hegeman – Master Thesis – Unrestricted version 16

How do Sonar SQALE quality assessment results of projects correlate to Info Support experiences

and expectations?

1. How do Info Support experts rate the sample projects on relevant SQALE characteristics?

2. What is the financial quality, expressed as hours/KLOC, of the sample projects?

3. How are the sample projects rated by a Sonar SQALE setup?

4. Which methods to improve the quality of the quality model configuration exist?

1.5. Document Structure

Globally, this thesis has the following structure:

- Background information about Info Support, quality models & tools is provided (ch. 2, p19);

- The research design is defined (ch. 3, p43);

- Results of the process of gaining validation data as well as the validation data itself are

reported (ch. 4 and 5, p61 onwards) ;

- Results of the phase in which we setup and configured the tooling and attempted to use it to

assess the quality of projects are described (ch. 6, p64);

- An analysis if the findings is presented (ch. 7, p74);

- Recommendations for Info Support are presented (ch. 8, p88);

- Discussion topics and suggestions for future research are provided (chapters 9 and 10, p91);

- Conclusions are presented (ch. 11, p101).

1.6. Related Work

This section mentions some other relevant work performed in the area of software quality

assessment and assessment methodology validation.

The IEEE attempted to empirically validate the suitability of object-oriented design metrics as quality

indicators (Basili 1996) by assessing eight comparable projects. Examples of metrics used in this

context are the inheritance tree depth, methods per class, and number of children of a class, i.e. all

metrics related to object oriented design. Specifically, the set of metrics from the Chidamber &

Kemerer ‘metrics suite’ are used (Chidamber 1994). Validation data consists of error data from the

testing phase of the applications. For each metric, an hypothesis is formulated about the relationship

between the metric value and ‘quality’, where more errors means less quality. This hypothesis was

found to be true in five out of six cases; results for the sixth case were insignificant. This results

demonstrates that most metrics from (Chidamber 1994) can be validated to provide information that

is an indication of quality.

This study is complementary to (Li 1993) in which the same metrics are used to estimate the

maintenance frequency of classes in a system. Li concludes that there is a strong relationship

between metrics and maintenance effort in object oriented systems and that maintenance effort can

be predicted from combinations of metrics collected from source code. The conclusions of both

studies are consistent.

Although no earlier work on the validation of the SQALE method was found, the underlying concept

of remediation cost, or technical debt (Cunningham 1992), is often discussed. Recently, the second

J.H. Hegeman – Master Thesis – Unrestricted version 17

international workshop on managing technical debt has been held in Honolulu, Hawaii. The program

can be found at the website (Techdebt 2011), proceedings are not yet available at time of writing of

this thesis. Work is presented about, for example, prioritizing design debt investment opportunities,

models for economic trade-off decision making and an empirical model of technical debt and

interest.

An empirical study of quality models in Object Oriented systems is described in (Briand 2002). This

study lists a number of ‘correlational studies’ in which metric values of a some data set are validated

by, for example, numbers of defects or expert opinions. Usually, these studies use a ‘set of metrics’

rather than an actual quality model. Data sets usually consists of a very limited number of projects,

often just one, which is identified as a shortcoming of many of the projects. Some of the studies use

expert opinions to gain validation data. For example, (Chen 1993) uses expert opinions to assess the

validity of a single newly invented metric.

The use of quality standards is not limited to software engineering, but applied in other sectors as

well. For example, organizational procedures can be ‘ISO 9000’-certified (Guler 2002) and

philosophies like ‘Total Quality Management’ focus on the continuous improvement of both products

and processes (Daft 2003) . Also, in the food industry, many quality standards are used, sometimes

inspired by incidents impacting public safety (Trienekens 2008).

1.7. Conclusion

We conclude this chapter by providing a schematic overview of the project. The diagram in Figure 1

shows the three research phases (left, right and bottom-center), as well as the conclusion phase (top-

center). These phases are separated by striped lines. Phases I through IV were carried out

consecutively. In each phase, a number of entities, indicated by boxes, perform actions or provide

information, indicated by arrows. Red questions are answered in the research design. The goal is to

answer the blue questions, which are the questions of this research. Arrows indicate flows of

information, while boxes indicate sources and processes.

The research design, that explains the details of the overview displayed in this figure, is fully

described in chapter 3.

J.H. Hegeman – Master Thesis – Unrestricted version 18

Figure 1 Research Design Overview

J.H. Hegeman – Master Thesis – Unrestricted version 19

2. Theoretical Background
This chapter provides to the reader background information that is relevant in the context of this

research. The information is obtained from a literature review as well as the documentation of

various tools and quality models available.

The definition of the term ‘quality’ can be an item of discussion. Although it is widely recognized that

context-specific definitions can be useful, the wish to have more general definitions remains

unfulfilled (Jørgenson, 1999). The search for a universal definition has not succeeded, and it is

claimed that such a global definition does not exist (Reeves, 1994). Also, different stakeholders may

have different opinions on what defines quality of a given type of artifact, potentially obscuring

communications. That is why we must make unambiguous context-specific definitions.

In an Information Technology context, the need for

quality is broadly acknowledged. Software development

projects still often encounter cost overruns and/or time

overruns, and often do not conform to specifications or

expectations (i.e. Standish, 2001). According to the

Project Management Diamond, as displayed in Figure 2.

(Haughey 2010), steering factors time, cost, scope and

quality should be balanced to make an information

system live up to its expectations. But balancing is only

possible if we can measure all four factors, including

quality.

An IT-specific definition of quality has been developed in

the ISO 9126 standard. This standard identifies a number

of high-level quality characteristics, namely Functionality, Reliability, Usability, Efficiency,

Maintainability and Portability (Jung e.a. 2004) and also software metrics that can contribute to

determining a score for these aspects. Chapter 2, on theoretical background information, further

elaborates upon ISO 9126.

An important asset of a software project is its source code. The source code of a software project

determines what the software actually does, and how, and therefore plays a crucial role in the

realization of quality (Luijten 2010).

2.1. Info Support Context

2.1.1. On Software Engineering and Management at Info Support

This research is conducted at Info Support BV in Veenendaal, the Netherlands. Info Support develops

and manages software for customers in four sectors: healthcare, industry & trading, finance and the

public sector. Distinguishing characteristics of Info Support, amongst others, are very strictly defined

and knowledge-intensive processes and procedures, used to ensure solidness and quality of

delivered products and services. Methods used for this purpose are, for example, test-driven

development, SCRUM (Abrahamsson 2002), code conventions and version control check-in policies.

The internally developed software development methodology is called ‘Endeavour’, which is

maintained by the Professional Development Center (PDC). The Managed IT Services (MITS)

department takes care of managing production software, developed either internally or externally.

Figure 2 Project Management Diamond

J.H. Hegeman – Master Thesis – Unrestricted version 20

More information on Info Support can be found at its website (Info Support, 2011). Figure 3 shows a

simplified overview of PDC and MITS relation. In the application lifecycle, Info Support can either do

only development, only management, or (preferably) both. Cases in which Info Support does neither

development or management are not relevant.

2.1.2. Earlier Work at Info Support

The problem defined in paragraph 1.1 has already led to some research initiatives that have been

conducted at Info Sport. In earlier research, it has been attempted to identify and test maintainability

metrics, but this research did not provide results that could be used in practice at Info Support

(Woolderink 2007). Another, non-academic but relevant, project is a quickscan of the possibility to

use the Sonar tool for quality monitoring and enhancement. Results of this quickscan were

promising, leading to a constraint on this research that the Sonar tool is to be one of the tools to be

looked at. This requirement is taken into account in paragraph 2.6.2 which identifies tools that can

be used to set up the proof of concept as defined in research design section 3.4.

2.2. Quality Model Terminology

A number of essential concepts need to be described before additional background information is

introduced. These concepts play a crucial role in quality models. First, metrics measure a specific

aspect of source code (Fenton 1997). Examples are cyclomatic complexity of a method, unit test

coverage of a class and the depth of a set of nested if-statements. Input to metrics is source code,

output is a value (i.e. numerical, percentage or Boolean). Second, Quality Models are mathematical

models that translate metric values into higher-level quality indicators. Since the late seventies,

different models have been developed, as will be described in paragraphs following. In some cases,

the quality model is also referred to as ‘method’. In 1991, the International Standards Organization

developed a standard, the original ISO 9126, later to be replaced by ISO 25000, as described in the

next paragraph. This standard was inspired by older quality models (i.e. McCal). Later models (i.e.

SQALE) may implement this standard. Software tools that assess quality implement a quality model.

2.3. On the ISO 25000

standard

In this research, we use the ISO 25000

standard as a foundation for software

quality measurement. Defined in 2005,

this standard is a follow-up of two

relevant predecessor standards, namely

ISO 9126 on software product quality, and
Figure 4 Integration of ISO 9126 and ISO14598 into ISO25000

Figure 3 Info Support PDC and MITS relations

J.H. Hegeman – Master Thesis – Unrestricted version 21

ISO 14598 on the software quality assessment process. Figure 4 shows a visual representation of the

integration and alignment process that led to the definition of ISO 25000 (Zubrow 2004).

2.3.1. The ISO 9126 component

Introduced in 1991 and developed by the International Standards Organization and the International

Electrical technical Commission, the ISO/IEC 9126 standard is an international standard for defining

and measuring software product quality. This original version of the standard includes six high level

quality characteristics and their definition (Jung 2004). It was claimed that these six quality

characteristics were sufficient to represent any aspect of software quality (Burris, 2004). Sub

characteristics and metrics, however, were not part of the standard, making the standard difficult to

apply.

The standard has evolved over the years, which has led to the development of ISO/IEC 9126-1

through-4 (written in 2001-2004)1. The standard now includes not only the original quality model

(9126-1), but also external and internal metrics (9126-2 and 9126-3) and metrics for quality of use

(9126-4) (Jung 2004). External metrics assess the behavior of software in a simulated environment

from an interface-view, while internal metrics do not rely on execution but look at the insides of

software, i.e. the source code. Usability metrics (referred to as ‘Quality-of-use metrics’) assess

software from a user point-of-view. For the purpose of this research, both the general standard and

internal metrics are relevant. We will see that these are the aspects of the ISO standard incorporated

in quality models used in software tools, since this allows for automated code quality assessment.

Figure 5 Hierarchical view of the ISO/IEC 9126 quality model

1
 The full ISO standards documentation is available from www.iso.org

J.H. Hegeman – Master Thesis – Unrestricted version 22

The standard proposed a hierarchy, denoting the term ‘quality’ as the root of the hierarchy three and

the six quality characteristics as the first level nodes. Each of these nodes is split up in several sub-

characteristics. Internal and external metrics can be used to determine a value for a sub

characteristics. Figure 5 gives a visual representation of this tree structure. As stated in the scope

paragraph 1.3, in this research we focus on the ‘maintainability’ aspect of quality. The maintainability

subtree of the ISO standard is consistent with our definition of quality from section 1.4.1.

For the aspects we look at, we provide a brief description of their meaning (Tavaf 2010):

- Maintainability is the ability to find and fix a fault in a software system.

o Analyzability characterizes the ability to identify the root cause of a failure within the

software.

o Changeability characterizes the amount of effort needed to change a system.

o Testability characterizes the effort needed to verify (i.e. test) a system change.

� Unit test run results: the amount of errors encountered while running the unit

tests of a system.

� Unit test coverage: the percentage of source code covered by the unit tests.

� Complexity: complexity (i.e. cyclomatic complexity) of the source code. This is

related to testability, because more complex source code is more difficult to test

and therefore has a negative impact on testability.

o Stability characterizes the sensitivity to change of a given system that is the negative

impact that may be caused by system changes.

o Compliance: Where appropriate certain industry or government laws and guidelines

need to be complied with. This sub characteristic addresses the compliant capability of

software.

Note that these definitions are not necessarily consistent with the characteristics descriptions of the

SQALE quality model (2.4.6), which will be used in the Proof of Concept of this project (3.4). They can,

however, be mapped, at will also be shown (6.1).

J.H. Hegeman – Master Thesis – Unrestricted version 23

2.3.2. The ISO 14598 component

The ISO 14598 component does not focus on software quality, but on the process of assessing

quality. This research project incorporates an assessment structure that is based upon ISO 14598.

The standard provides an abstract proces of how a software quality assessment process should look

like. The process is depicted in Figure 6 (source: (Gruber 2007)). The relationship between ISO 14598

and ISO9126 is that the first can be applied to the second, meaning that the process is used to

execute the model. Note that the process is generic in the sense that it can be applied to any quality

model. Also, other processes may provide suitable ways to execute the model.

2.4. On Quality Models

As mentioned, the ISO 25000 standard did not just

emerge. Quality models have been defined for decades.

The purpose of a quality model, in this context, is to

transform metrics to high-level quality indicators.

Usually, the quality model allows for some tweaking to

conform to business needs. Figure 7 displays a simple

overview of the concept of a quality model. This

paragraph provides a short description of a number of

models and their relation to the ISO standard.

Figure 6 ISO 14598 Quality Evaluation Model

Figure 7 Quality Model Concept. Arrows show

input and output

J.H. Hegeman – Master Thesis – Unrestricted version 24

2.4.1. McCal Model

As a foundation for what would later become the ISO standard, McCal introduced the concept of the

hierarchical combination of metrics into higher-level quality attributes as early is 1978 (McCal 1978).

Combination is performed by addition, where each metric value is associated with a regression

coefficient, based upon the established importance of the metric value.

Consider the situation in which we have four metrics with the following regression coefficients:

- Cyclomatic complexity: -0.5

- Program length: -0.1

- If-statement nesting depth -0.5

The model allows us to define negative coefficients for metrics for which a higher measurement

value means lower quality. Suppose that the software artifact under consideration has a cyclomatic

complexity of 30 paths, a program length of 660 lines and a maximum if-statement nesting depth of

5.

Suppose this set of metrics is attached to one quality factor, namely ‘maintainability’. The

maintainability factor would be -0.5*30 + -0.1 * 660 – 0.5*5 = -83,5. An important limitation of the

model is that it is only suitable for metric-quality correlations with a linear relation.

Elements of the McCal model are still visible in today’s ISO standard. For example, McCal introduces,

amongst others, maintainability, testability, portability and reusability as high-level quality indicators.

2.4.2. Boehm Model

The Boehm model (Boehm, 1999), also referred to as COQUALMO (‘Constructive Quality Model’),

focuses on the introduction and removal of defects in a software system, where in a source code

context a defect is a programming error leading to incorrect software behavior. Goal of the model is

to predict the number of residual defects per unit of size, i.e. thousands of source lines of code or

function points. An practical description of the use of the model can be found in (Madachy 2008).

The mathematics in the model are as follows. Consider the following formula:

In which:

- A is the scalar of coding defects, used to be able to combine the result with requirements and

design defects (which are also part of the model, consider A=1 for this example)

- Size is the size of the project in KLOC

- b is used to account for economies of scale if needed. No proof for a value other than 1 is found,

so by default it is set to 1 (Boehm 2000).

- Di is a Defect Introduction Driver value, of which 21 have been defined in the model. These

drivers identify reasons for defects to occur.

Example of drivers are team cohesion en programmer capability. This means that source code quality

is determined based on information that is not necessarily directly source-code related. This

paradigm is mainly applicable for development processes.

J.H. Hegeman – Master Thesis – Unrestricted version 25

A predecessor of COQUALMO, called COCOMO (‘Constructive Cost Model’), is thought to have been

the most cited, best known and most plausible of all traditional cost prediction models (Atterzadeh

2010). In the late nineties, however, the model no longer fitted the modern development

environment and was succeeded by COCOMO II. Reasons for this were the need for support for

application composition (i.e. object orientation) and the need to be able to determine costs in earlier

stages of the development process, The focus on quality was introduced in COQUALMO, which can

be seen as an extension to COCOMO II, which was still mainly a cost model. The model is not

explicitly related to the ISO standard.

2.4.3. Dromey Model

As an implementation of the original 1991 ISO9126 standard, Dromey (Dromey 1995) introduced the

concept of ‘Quality-carrying properties’ of source code to provide a definition of what the high-level

quality indicators from the original ISO standard mean in a practical situation. A quality-carrying

property is associated with one or more high-level indicators from the ISO standard and with specific

aspects of software source code, meaning that building these properties into software contributes to

reaching a high-level quality indicator. Dromey believes that it is impossible to build high-level quality

attributes into products. Instead, developers must build components that have properties that result

in the manifestation of quality (Kitchenham 1996). This can be considered a bottom-up approach.

Consider Figure 8, a redraw of an image from (Dromey 1995). The source code artifact of type

‘expression’ can, in the model, have four ‘quality carrying properties’. How it is determined whether

or not the expression carries these

 Figure 8 Dromey hierarchy example

properties is left to the user of the model, but the outcome is binary. This means that an expression

either has or does not have each of the quality-carrying properties. The properties are mapped to the

ISO-based quality characteristics and sub characteristics. The amount of properties artifacts have and

have not are an indicator for quality. Also note that properties are not necessarily the responsibility

of the programmer; some properties are inherent to design choices such as the programming

languages.

2.4.4. SIG model

2.4.4.1 General model description

The Software Improvement Group (SIG) uses an ISO9126-based quality model, with a focus on

maintainability, for professional software quality assessments (Heitlager 2007). In this model, a

maintainability index on a scale from 1 to 5 is calculated using the four aspects of analyzability,

changeability, stability and testability, consistent with the sub characteristics of maintainability of ISO

J.H. Hegeman – Master Thesis – Unrestricted version 26

9126 as well as the definition of quality in this research. The SIG model itself it public, but it relies on

a large ‘benchmarking repository’ for calibration. For this purpose of this research, a SIG audit has

been provided to the author of this work as reference material. Since this is a confidential report, we

cannot go into details. The way in which assessment results are presented indicate that the method

used by SIG is based upon quality models and tool results that are very similar to the ones used in

this research.

2.4.4.2 The Sonar SIG Maintainability Model Plugin

Note that for the Sonar tool (see paragraph 2.6.2.2), a SIG plugin exists (Sonar SIG 2011). This plugin

implements a subset of the SIG quality model using five metrics: Lines of Code, Duplication,

Coverage, Complexity and Unit Size with a 5-point scale to calculate, using a many-to-many table (see

Figure 9) averages the four quality indicators analyzability, changeability, stability and testability,

which are the aspects of maintainability as defined in ISO 9126. This plugin does not fully imitate the

SIG model, as it has no calibration functionality and also does not allow the user to drilldown into

origins of problems.

Figure 9 Sonar SIG model plugin: metric-indicator mappings

2.4.4.3 The SIG paradigm

A number of relevant aspects of the ideas behind the SIG quality model should be emphasized. This

information was largely obtained from a visit to SIG during the course of this project, where Joost

Visser, head of research, presented the

model.

• The set of metrics used in the SIG

model is limited. SIG states that

metrics should not overlap (i.e. each

used metrics should identify a

different aspect of source code

quality) and should be non-

controversial, meaning that

developers should know what to do in

case a metric value does not meet

requirements.

• SIG explicitly does not define what is ‘good’ and ‘bad’, but only defines ‘better’ and ‘worse’.

This is accomplished by a benchmarking principle. Consider the following example: suppose

‘unit test line coverage’ is a used metric. Also, supposed that we want to assign the worst 5%

of projects a ‘1 star’ rating and the best 5% of projects a ‘5 star’ rating, and split up to 90% of

projects in between into 3 segments of 30% with a 2, 3 or 4 star rating. Also, we assume that

Figure 10 Benchmark example – Unit Test Coverage distribution

J.H. Hegeman – Master Thesis – Unrestricted version 27

a larger coverage value is always better than a lower one. Figure 10 shows an example

distribution of coverage percentage over projects (the artifact size may be a class or a

method as well). The two scales above the image show the five selected sections of the x

value range (upper) and the x values at the boundaries of the sections (lower). We see that

5% of projects have a coverage level of 10% or lower; the next 30% has a coverage between

10% and 60%, etcetera. This results in the following rankings:

� Rating 1: <= 10% coverage

� Rating 2: 10% < coverage <= 60%

� Rating 3: 60% < coverage <= 80%

� Rating 4: 80% < coverage <= 95%

� Rating 5: coverage >95%

• A major advantage of this approach is that a quality judgment is always relative to other

systems and no explicit definition of good and bad is needed. Also, by adding newly assessed

projects to the repository and removing old ones (i.e. older than 3 years), the calibration

process automatically stays up to date. In practice, a slight but structural increase of software

quality in general is observed by this method. Major disadvantage of the method is that it

needs a large database of sample projects for calibration, which makes the model less usable

in situations where this ‘benchmarking repository’ is not available. More background

information on the benchmarking principle is available from (Correia 2008).

Aggregation of ratings per metric into higher-value ratings is performed by a method that is

similar to, but somewhat more complex than displayed in Figure 9; i.e. a many-to-many

mapping from metric ratings to ISO factors. For each occupied cell in the matrix, a weight

factor is used.

• Validation of the model configuration was found to be difficult due to the lack of sources of

validation data. A positive correlation, however, was established between software artifact

quality as measured by SIG and the time needed to repair incidents in these projects (Luijten

2010).

2.4.5. Qualixo Model

The Qualixo quality model (Laval 2008) defines four elements with different granularity levels:

• Metrics are low-level measurements computed directly from source code, consistent with

the definition in the terminology section 2.2.

• Practices assess one quality aspect of a model and are associated with one or more metrics.

The value for a practice always lies between 0 and 3, where 3 is the best possible value and 0

is the worst possible value. These values are obtained by weighting and scaling associated

metric values, and scaling this down to the 0-3 range. This downscaling can take place either

by a continuous function or by mapping discrete values 0 through 3 to a range of metric

values. As an example, consider a source code artifact with the following metrics, all

associated to one practice:

J.H. Hegeman – Master Thesis – Unrestricted version 28

Metric Value Mapping

function

Scaled

value

Metric

Weight

Cyclomatic

Complexity
7

<=8 � 3

9-12 � 2

13-16 � 1

>=17 � 0

3 3

Unit Test Coverage 80% 3 * value 2.4 5

Class Length 426 lines

<=100 � 3

101-300 � 2

301-500 � 1

501+ � 0

1 1

If statement

nesting depth
4

<=2 � 3

3-4 � 2

5-6 � 1

7+ � 0

2 2

Tabel 3 Qualixo model calculation example: metrics to practices

The ‘Mapping’ column defines how metric values are translated to the [0..3]-scale. Unit Test

Coverage is translated by a continuous function, while the other metrics are translated by a

discrete mapping. The ‘Scaled value’ column shows the resulting quality judgment for each

metric. The total score for this practice is the weighted average of scaled values:

 (3x3 + 2.4x5 + 1x1 + 2*2) / (3+5+1+2) = 2.36

• Criteria assess one principle of software quality by taking a weighted average of a nonempty

set of practices. For each practice, the value is calculated as described earlier, and a weight is

used to indicate the importance of the practice in the set. This calculation again results in a

value between 0 and 3.

• Factors represent the highest quality assessment and are again computed over a set of

weighted criteria. Figure 11 gives an overview of the Qualixo quality model.

Figure 11 Qualixo Quality Model

J.H. Hegeman – Master Thesis – Unrestricted version 29

A fixed interpretation is set for the scores in the [0-3] scale, as displayed in Table 4.

Qualixo

Score

Interpretation

[0-1) Failure in meeting the quality objective

[1-2) Achieved with reserve

[2-3] Achieved
Table 4 Qualixo Score Interpretations

The set of Factors for the Qualixo model is fixed. These factors are Functional Capacity, Architecture,

Maintainability, Capacity to Evolve, Capacity to re-use and Reliability. This partially matches the ISO

9126 set as van be seen in the comparison table at the end of this paragraph. A drawback of the

model is that it is quite abstract and does not provide guidelines for the weighing that occurs on

multiple levels on the model.

2.4.6. SQALE Model

The SQALE quality model (‘Software Quality Assessment based on Life Cycle Expectations’) (Sqale

2011)(Letouzey 2009), also referred to as ‘method’ instead of model, is a newer, language and tool

independent method for quality assessment. It can be applied to different types of artifcats, and

software source code is one of them. It is based upon a ‘remediation cost’ paradigm, in which high-

level quality indicator values indicate the amount of time or financial resources needed to repair all

issues. These ‘issues’ are violations of rules, which are pre-defined metrics with metric value

threshold that define what is allowed and what is not (see 2.4.6.2) Remediation costs are compared

to ‘total costs’, which are defined as the total estimated amount of time or financial resources

invested in developing the project. Total costs may be calculated by multiplying the size of a project

(i.e. in thousands of lines of source code) by the estimated average amount of hours needed to

develop one thousand lines of code. A discussion about this paradigm can be found in section 9.4.

Since it is incorporated in many tools today, we will elaborate on this model. First, we will elaborate

on the structure of the model. Second, we will provide an example. Back.

2.4.6.1 Model Structure

The model defines three levels of hierarchy:

• The upper level in the hierarchy are the SQALE

Characteristics, as shown in Figure 12, which are a

‘projection of ISO 9126 model on the chronology of

a software application’s lifecycle’. This means that

the characteristics of the model have a

chronological sequence of importance, and failure

on one level implies failure on all levels above,

since each level conforms to a phase in the

software lifecycle. For example, if maintainability is low, portability and reusability are also

compromised, since these characteristics depend on maintainability. Depending on the

context in which the model is used, some characteristics may be left out. Efficiency, Security,

Maintainability, Portability and Reusability are considered ‘optional’ in the definition of the

model.

Figure 12 SQALE quailty characteristics

J.H. Hegeman – Master Thesis – Unrestricted version 30

• Below the top level is the level of sub characteristics. These sub characteristics have a lower

level of abstraction than characteristics. Each sub characteristics is attached to one

characteristic, namely the lowest one applicable in the ‘staircase’ as depicted in Figure 12,

consistent with the characteristics concept. There is no fixed set of sub characteristics to use,

and the SQALE user is free to choose his or her own sub characteristics and their mapping to

characteristics. Table 5 show this mapping as implemented as the default model

configuration in the Sonar SQALE plugin. Note that the ‘Reusability’ characteristic is left out

of this implementation.

• Source code requirements. In SQALE, these are called ‘rules’. Rules are measurable quality-

related aspects of sources code, again linked to the lowest possible sub characteristic of the

model. Rules can be violated, and the number of violations is essential in determining high-

level quality indicators and remediation costs.

Portability Maintain-

ability

Security Efficiency Changeability Reliability Testability

Compiler

Related

Readability API Abuse Memory use Architecture

Related

Architecture

Related

Integration

level

Hardware

Related

Under-

standability

Errors Processor use Data related Data related Unit level

Langauge

Related

 Input Validation &

Representation

Logic related Exception

Handling

OS Related Security

Features

 Fault tolerance

Software

Related

 Instruction

related

Time zone

related

 Logic related

 Synchroni-

zation related

 Unit Tests

Table 5 SQALE mapping of Sub Characteristics to Characteristics (Sonar plugin default model)

2.4.6.2 Rules versus Metrics

While other models may have source code metrics as their lowest-level quality hierarchy

components, SQALE uses rules. To be able to comprehend the model, it is important to understand

the relation between rules and metrics, since these are not equivalent. A metric, in the context of

software source code, is a method to measure a specific aspect of the code. The input is source code

and the output is a value (i.e. a number or percentage). A rule, on the other hand, not only measures

some aspect of source code, but also decides whether or not the measurement result is to be

considered ‘good’ or ‘bad’. When a result is ‘bad’, this is considered to be a ‘rule violation’. To

accomplish this, rules incorporate not only a metric, but also parameters that define what is good

and bad. Additionally, a parameter exists that defines the remediation cost in units of time per

violation. So, a rule is not equivalent to a metric, but has a ‘has-a’ relation to one (and only one)

metric. The following two examples clarify this.

- Cyclomatic complexity is a metric that measures the number of linearly independent paths

through software source code (Fenton 1997). When incorporated in a SQALE rule, parameters

would be added that define that the maximum allowable cyclomatic complexity is, for example, 8

different execution paths per method, and remediation costs for a violation are 45 minutes. Each

method in the source code that has a cyclomatic complexity of 9 or higher would be considered a

J.H. Hegeman – Master Thesis – Unrestricted version 31

violation of this rule and the total remediation costs are 45 minutes times the number of

violations.

- Unit Test line coverage is a metric that measures the percentages of lines of code that are

covered by unit tests (Williams 2001). When incorporated in a SQALE rule, parameters would be

added that define that the minimum allowable unit test line coverage is, for example, 70% of

source code lines without comments and whitelines per class and remediation costs for a

violation are 30 minutes. Each class that has a coverage below 70% would be a violation and the

total remediation costs are 30 minutes times the number of violations.

The parameter that define good and bad can be a single threshold value (i.e. a minimum or

maximum) or can be a function for cases when there is no clear distinction between good and bad. In

this case, the function is required to be monotonic on the interval(s) corresponding to non-

conforming values, and constant or equal to 0 on conforming intervals. Remediation costs can be

specified either per violation or per source code file containing one or more violations. Note that a

linear relationship between cost, hours of work and lines of code is assumed, so these are considered

equivalent and the terms are sometimes used interchangeably.

2.4.6.3 Aggregation of Metrics

All aggregation in SQALE is performed by addition. This way,

the SQALE remediation costs for each sub characteristic can be

calculated by summing up the remediation costs of violations

of all associated rules. This sum of remediation costs is referred

to as ‘index’. The index of a characteristic is simply the sum of

indices of associated sub characteristics. The overall SQALE

quality index is the sum of all characteristic indices. Also, a

‘consolidated index’ is defined for each level of the

characteristics ‘staircase’, which is always the sum of indices of

the specific level and all levels below.

2.4.6.4 Calculating Ratings

By dividing indices by the size of the artifact that is being analyses, we define the set of ‘density

indices’. Since the indices indicate the amount of man-hours needed to repair all issues, the size of

the artifact is also expressed in man-hours, namely the amount of man-hours needed to develop the

artifact. Out of the SQALE density indices, SQALE ratings can be calculated using a mapping of the

continuous range of density indices to a discrete scale of a number of ratings. What is considered

‘good’ and ‘bad’ is left to the user of the model.

This information also allows us to define a Kiviat.

Figure 13 displays a mapping from indices to five

ratings, and Figure 14 shows a Kiviat example from

the Sonar tool that uses the SQALE model. These

ratings provide us the ‘indices’ as defined in the

requirements of this research, namely a discrete

value on a defined scale. Also note that in this

Kiviat diagram, ‘inner’ values, indicated by a point

in the green circle, are better than values in ‘outer’

Figure 14 Sonar SQALE Kiviat example (screenshot)

Figure 13 an example SQALE score-rating-

color mapping

J.H. Hegeman – Master Thesis – Unrestricted version 32

(red) circles, as oposed to the Kiviat used by Kalistick as described in 2.6.2.3. Reason for this is that in

the remediation cost paradigm, less is better.

The diagram on the following page shows a full example of a SQALE quality calculation using, from

left to right, rules (incorporating metrics), sub characteristics, characteristics and an overall quality

judgment. A legend, project metadata and index-rating mapping are defined on top of the diagram.

Additional background information can be found in two conference papers (Letouzey

2010a)(Letouzey 2010b).

J.H. Hegeman – Master Thesis – Unrestricted version 33

Figure 15 Full SQALE example

J.H. Hegeman – Master Thesis – Unrestricted version 34

2.4.6.5 Calculation Example

We illustrate the use of SQALE by means of an

example. Consider the example of a SQALE

quality assessment displayed in Figure 16. This

assessment was performed using our Proof of

Concept setup (6.2). The assessed project has

62 KLOC of code. SQALE has been configured so

that a LOC costs 0.06 man-days to develop,

which is the default value. Total development

cost, therefore, is 62*0.06*1000=3720 days.

The index-rating mapping is defined as follows:

A: <0.01, B: 0.01-0.04, C: 0.04-0.16, D: 0.16-

0.64, E: >0.64.

The overall SQALE rating, therefore, is 392 days

/ 3720 days = 0,105, which gets rating ‘C’. This

calculation can be performed for each of the

characteristics, which has also been done to

draw the kiviat. This yields the following scores:

• Changeability:

10.1 / 3720 = 0.0027 � Rating ‘A’

• Maintainability:

225.7 / 3720 = 0.061 � Rating ‘C’

• Reliability:

113.1 / 3720 = 0.030 � Rating ‘B’

• Testability:

43.2 / 3720 = 0.012 � Rating ‘B’

2.5. Discussion

Summarizing, we discussed the following models:

• The McCal model, which introduces a hierarchy to translate metrics to higher-level quality

indicators and uses linear regression coefficients to determine the effect of metric values on

quality;

• The Boehm model, which predicts the number of defects in software based on 21 indicators

relation to different aspects of the development processes;

• The Dromey model, introducing quality-carrying properties of source code artifacts which are

asociated to high-level indicators to determine quality

• The SIG model, which is used in a commercial service which focusses on the maintainability

aspects of ISO9126 and provides scores on a [1..5] scale for these aspects, based on source

code analysis.

• The SQALE model that we explained in detail. It uses the concept of rules to determine

remediation costs for source code artifacts, and translates these to high-level indicators by a

Figure 16 SQALE calculation example

J.H. Hegeman – Master Thesis – Unrestricted version 35

mapping of rules to sub characteristics, sub characteristics to characteristic and a mapping of

remediation costs divided by development costs to a [A..E] scale.

Now that we have elaborated upon quality models, a few general remarks of discussion should be

made. First, it should be emphasized that the implementation of the ISO standard by models, as well

as the implementation of the models by tools, is not always strict. Model and tool developers usually

appear to be using free interpretations of the entities they are implementing to suit there own needs

or preferences. To give an example, the SQALE characteristics ‘look like’ the ISO9126 characteristics,

but are not a strict subset (see Table 6 on page 40 for a comparison of ISO9126 to model

implementations used in tools.). Also, the SQALE model specifices a number of characteristics to by

mandatory in the model, while Sonar SQALE still allows the user to remove these.

Second, all models contain parameters that may be set by the user to conform the business needs or

wishes. Most tools have ‘default settings’, so that they run out of the box. In this research, we use

expert opinions to validate measurements. We choose to initially run tools (and thus models) with

their default settings, because if we were to tweak the models to conform to Info Support wishes, we

would need experts to define these settings. This would have an impact on our validation attempt,

since the data source of the validation data, the experts, would also be one of the sources of the data

to be validated. On the other hand, it will be interesting to see of model calibration by experts will

increase the correlation of tool-based quality measurements with expert opinions. This makes it a

logical research design choice to perform both an initial ‘uncalibrated’ measurement and a

measurement using a quality model configuration calibrated by experts. We will incorporate this

thought in the research design as defined in chapter 3.

2.6. On Quality Assessment Tools

To be able to accomplish the task of software quality assessment, we use software tools based upon

software source code quality models. In the initial research phase of this project, tools have been

selected to use in the Proof of Concept phase as defined in paragraph 3.1.3. In this section, we report

on this selection process by identifying available tools and compare them using several relevant

criteria. First, these criteria will be defined and motivated. Second, all identified tools will briefly be

described. Third, a comparison of the available tools will be presented, using the criteria identified

earlier. Finally, conclusions will be drawn from the comparison. Note that a maximum of two tools

will be used for the Proof of Concept phase of this research, due to resource constraints, as

mentioned in section 1.5.

2.6.1. Comparison Criteria

Before we can judge about tools we identify, we need to define a number of criteria. Some criteria

are ‘kickout criteria’, meaning that meeting these state an absolute requirement. The following

criteria have been formulated, and will be elaborated upon in the next sections:

1. Source and License Type

2. Quality Model & Standard Compliance

3. Languages Support

4. Business Model

5. Cost

6. Tool Architecture

J.H. Hegeman – Master Thesis – Unrestricted version 36

2.6.1.1 Source and License type

Although a preference for open source tools is superimposed by Info Support, we did not ignore all

closed source solutions as of yet, since we may miss interesting tools that have advantages that

compensate their closed source. Commercially available products will be investigated, provided

enough information can be obtained to be able to assess their suitability.

The license type is relevant since we want to be able to incorporate tools in a professional, for-profit

production environment. The tool license should allow this, because if it does not, the tool is not

usable in the context of the business aspect of this research. Therefore, this is a kick-out criterion.

2.6.1.2 Quality Model & Standard Compliance

The tool we select is supposed to be using a well-defined quality model. The concept of quality

models was explained in section 2.4. Since we have explicitly chosen to use the ISO9126 standard as

a foundation for quality assessment, selected tools should be using a quality model that is based

upon this standard as well.

We define this as a kickout criterion. An initial quickscan, however, suggests that many tools may use

an adapted version of the standard, often documented by terms like ‘inspired by’ or ‘based upon’.

We consider this to be allowable, since a requirement of strict standard compliance will kick out too

many, or possibly all, potentially interesting tools.

2.6.1.3 Language Support

Tools can support any number of target programming languages. A constraints of this research is that

tools are required to at least support both Java and C#. This is therefore a kickout criterion.

2.6.1.4 Business Model

Using third-party tools in a production environment implies that the production environment

becomes, to a certain extent, dependent on that third party. This makes is preferably that this third

party can continuously provide support, for example by providing software updates and bug fixes.

We therefore define a criterion ‘Business Model’, and state the we prefer a model focused on

continuity, i.e. a commercial product, or an open source project with sufficient community support,

over a model that is less certain to persist, i.e. a single-person initiative or a purely academic research

initiative.

2.6.1.5 Cost

Cost may be involved in using third-party tools, for example license or support costs. Also, cost will

be involved in the actual implementation of a tool in the software management process at Info

Support, but for the purpose of this research we focus on the long term and only consider structural

cost.

2.6.1.6 Tool Architecture

Available tools differ in the global architecture they use. Examples are a standalone architecture, in

which the tool runs on a standalone computer, or a server-client-architecture in which a central

server may perform the actual analysis. Also, some tools are ‘software as a service (SaaS)’, in which

the analysis is performed on a computer in a ‘cloud’. We prefer not to use a SaaS-solution, since this

would imply sending source code to a third party, which is especially difficult when Info Support is

not yet the owner of the source code under consideration, i.e. when performing analyzes to

J.H. Hegeman – Master Thesis – Unrestricted version 37

determine the management service that can be offered to a potential new customer. This is,

therefore, a knockout criterion.

2.6.2. Tools

This section described the identified tools and assesses them using the defined criteria. Tools have

been identified by searching literature and by using a free search on the Internet, using search terms

like ‘software quality tools’, ‘software quality assessment’ and ‘software metric tools’. Internet

forums have been helpful, since answers to questions on the availability of software quality

assessment tools can be found there. Although a thorough search has been conducted, we do not

claim that this set includes all possible relevant tools, since we have no method of proving such a

claim. Found tools were added to the set if the first impression was positive or neutral. To prevent

‘false negatives’, only tools that were evidently unsuitable have been left out. ‘Evidently unsuitable’

can mean, for example, that the tool does not support Java or C#, even using a plugin, is not actively

maintained or is not supported by any organization. Some tools, or ‘frameworks’, appear to be very

interesting but only seem to exist on paper, which clearly also indicates unsuitability. Also, many

tools operate on a low level of abstraction, applying metrics to take code measurements but not

using any quality model to judge quality. Most tools found do not meet the basic requirements. A

small number of them do, these are described in the next paragraphs.

First, we will present a textual survey of all identified tools that are considered potentially suitable,

and their capabilities and properties, after which a comparison of all tools will be provided, using the

criteria defined earlier

2.6.2.1 Squale

Squale (Squale 2011) stands for Software QUALity Enhancement and is a ‘qualimetry platform that

allows both developers and managers to gain insights in the quality of software being developed’. It

uses the Qualixo quality model to aggregate software metrics into higher level quality indicators

(Laval 2008). As of 2009, it is a M€3.1 project with an effort of about 25 person-years (Bergel 2009).

Main goals of Squale is to enhance the existing software quality approach in a number of areas,

including enhancement of the quality model, defining dashboards and disseminating acquired

knowledge. Squale is being used in a test-case production-environment at Air France and PSA

Peugeot-Citroën.

The tool is distributed under the terms of the GNU Lesser General Public License (LGPL) version 3 and

can be freely downloaded from the project website. A standalone version for testing purposes is

available.

A major drawback of the current implementation is that C# support is not yet available. Although it is

planned to be implemented, the current version only supports Java, C/C++ and Cobol. Although

Squale is considered an interesting tool, this drawback makes it unsuitable for the Proof of Concept

in this research at this point in time.

2.6.2.2 Sonar

Sonar is an ‘open source platform to manage code quality’ (Sonar, 2011). Since recently, Sonar

incorporates the SQALE quality model, not to be confused with the Squale tool described earlier.

Sonar is published under the LGPL version 3 and freely available for download from it’s website. It

requires Java Development Kit version 5 or newer and depends on Maven for source code access.

J.H. Hegeman – Master Thesis – Unrestricted version 38

Additionally, a database is required to store measured data. Options include MySQL, Oracle,

PostgreSQL and MS SQL Server. Sonar inherently supports Java, while C# support is available using a

plugin which enables simple support for maven in Visual Studio. In turn, this plugin requires a maven-

dotnet plugin, which is also freely available.

A drawback of Sonar is that the .net-plugin does not support 100% of the functionality provided for

Java by the built-in Java support. Improvements are being made, but since Sonar is originally only

focused on Java it is to a certain extend tailored to a Java-way of doing things, making it difficult to

achieve full functionality in any other language (Sonar .net 2011).

Although Sonar is an open source project, support for the SQALE quality model is provided by a

plugin that costs k€2.7 per year per instance of sonar, including upgrade, maintenance and support.

The plugin provides six additional ‘dashboard widgets’ that provide high-level quality indicators.

Without this plugin, the information provided by Sonar has a lower level of abstraction (i.e. metric-

level) and is less usable for managers. For the purpose is this research, the SQALE plugin is required.

It has been verified that the plugins for SQALE and .Net can be combined, although the mapping from

rules to quality characteristics has to be manually defined in this case as there is no default mapping

available.

A public demo of Sonar, called ‘Nemo’, is available at (Sonar Nemo 2011). This demo contains a

database of a large number of open source projects. The demo environment is equipped with both

.Net support plugins and the SQALE plugins. A drawback of the demo environment is that is cannot

be fully customized, since no administrative privileges are available to visitors.

2.6.2.3 Kalistick

Other than Squale and Sonar, Kalistick is a

commercial product. It focuses on ‘continuously

delivering working software’ by ‘enhancing

collaboration between developers, testers,

Quality Assurance and operations (Kalistick

2011). It claims to be mainly suitable for agile

development processes, the ‘agile’ product

costing approximately k€0.5 per month. A 30-day

trial version is freely available. Kalistick has native

support for both Java and C#, which is an advantage over Sonar which depends on a plugin for C#-

support.

The software explicitly uses an implementation of the ISO 9126 standard, similar to SQALE. The set of

high-level quality aspects, in Kalistick named ‘factors’ or ‘quality themes’, contains the items

maintainability, capacity to evolve, efficiency, portability, security and reliability. Figure 17 shows an

example of the high-level quality overview. Each factor is rated on a scale from 0, in the center of the

image, to five, in the outer ring. An objective can be formulated for each factor. Apparently, when a

factor value becomes higher than the objective, it is rounded down to the objective value.

Kalisticks quality model uses metrics and ‘threshold values’, allowing the model to identify all

‘violations’. A violation is a case in which a specific metric exceeds the threshold value at a specific

Figure 17 Kalistick high-level quality indicator example

(screenshot)

J.H. Hegeman – Master Thesis – Unrestricted version 39

location in the source code. Threshold values can be dynamically configured. All types of possible

violations belong to one of the following quality domains: implementation, structure, test,

architecture, documentation, duplication. Also, violations all have a ‘severeness’, in order of

severeness: to avoid, disadvised, highly disadvised and forbidden. The quality factor values are

calculated from the amount and severeness of the violations.

A drawback of Kalistick is that it is ‘Software as a Service’ (SaaS). While a part of the software runs on

the client, the actual code analysis is performed in a cloud. Although a secure connection is used and

non-disclosure is guaranteed, users may not want to send their source code to a third party for

analysis. Info Support has indicated a SaaS solution to be ‘not preferable’, especially due to the fact

that assessment at MITS takes place before Info Support becomes owner of the code. Since we have

defined SaaS as a knockout criterion, we cannot use it in our Proof of Concept.

2.6.2.4 CAST Application Intelligence Platform

The CAST Application Intelligence Platform (Cast 2011) is an ‘automated system to measure the

structural quality of software and the performance of development teams’. It is a commercial

product, that uses a quality model based upon a number of characteristics that is similar to, but not

explicitly based upon, ISO 9126. Standard indicators are transferability, changeability, robustness,

performance, security and maintainability index. CAST supports both Java and .NET source code

natively.

Not much information about the internal working and actual functionality of CAST is available online,

as its available documentation and website are very business-oriented. Also, no trial version is

available, and no pricing information is available. Requests for more information have not been

fulfilled.

2.6.2.5 Metrixware

Like CAST, Metrixware (Metrixware 2011) is a commercial product. It explicitly uses ISO 9126 and

strictly follows this standard, using exactly the quality aspect set (called ‘Code Health Factors’) from

the standard. It natively supports both Java and C#.

Unfortunately, no trial version or pricing information is available, and documents (i.e. whitepapers)

that can be requested to be sent by e-mail were never received. Also, no reply was received to

explicit information requests by e-mail. The websites of Metrixware and SQALE, however, identify

Metricware as a SQALE-based SaaS-solution. Since SaaS is defined as a knockout criterion, we cannot

use Metrixware in our Proof of Concept.

2.6.2.6 SQuORING

SQuORING is a new tool that has not yet been released. It explicitly uses the SQALE quality model

and natively supports bot Java and C# (Squoring 2011). It’s business model is not yet known, but the

product is being developed by a privately-held company. The application uses a client-server model

and is non-SaaS. Although the basic requirements are met, the fact that the software is not yet

available makes it impossible to use in the PoC. It is, however, a promising projects that may become

interesting in the feature.

2.6.3. Comparison & Conclusion

Using the criteria defined earlier, we will now compare the identified tools. The comparison of

criteria values is listed in Table 7. Bold table cell entries indicate violations of knockout criteria. Also,

J.H. Hegeman – Master Thesis – Unrestricted version 40

Table 6 shows a comparison of the quality indicators as used by the different tools, and the original

ISO 9126 standard.

As defined by

ISO standard
Qualixo SQALE

‘Kalistick-

model’
‘CAST model’

‘Metrixware

model’

Functionality
Functional

Capacity
 Functionality

Reliability Reliability Reliability Reliability Robustness Reliability

Maintainability Maintainability Maintainability Maintainability Maintainability Maintainability

Efficiency Efficiency Efficiency Efficiency

Usability Usability

Portability Portability Portability Transferability Portability

 Architecture

Capacity to re-

use
Reusability

Capacity to

evolve
Changeability

Capacity to

evolve
Changeability

 Testability

 Security Security Security

 Performance

Table 6 Quality Aspect Comparison

Criterion Sonar Squale Kalistick CAST Metrixware SQuORING

Source &

License

Open, LGPL

v3
Open, LGPL v3

Closed, app-

specific

Closed, app-

specific

Closed, app-

specific
Unknown

Java/C#

Support
Yes* No (Java only) Yes Yes Yes Yes

Business

Model

Non-profit

(non-

academic)

Non-profit

(academic)
Commercial Commercial Commercial

Unknown

(Privately

held)

Cost
k€2.7/year

**
Free k€6/year Unknown Unknown Unknown

Quality

Model
SQALE Qualixo SQALE-like Unidentified ISO 9126 SQALE

Tool Arch. Client-server Client-server SaaS Unknown SaaS
Client-

server

Table 7 Software Tool Comparison

* C# support for Sonar is only available using a plugin

** Sonar itself is freely available, but the plugin required to use the SQALE quality model is a commercial

product.

From the comparison, we can conclude that Squale is not a logical option to include in the Proof of

Concept, since it does not support C# yet while alternatives do. C# support is a requirement for Info

Support. We therefore choose to omit Squale from the remainder of this research.

While the functionality of Sonar is impressive, the C# support through a plugin may not be very solid.

It is hard to determine to which extend this may lead to problems without a more practical test.

Since it is the only open source solution that is considered potentially feasible, it seems logical to

include Sonar in the third phase of the research to be able to learn more.

J.H. Hegeman – Master Thesis – Unrestricted version 41

Kalistick appears to be a promising solution, natively supporting both Java and C#. The major

drawback are the costs and the violation of Info Support’s preference for an open source and non-

SaaS solution. These aspects cause Kalistick to be unsuitable for our proof of concept.

CAST and Metrixware are, in many ways, comparable to Kalistick. Its scientific background could,

however, not be validated and not all essential information is available. Inclusion in our proof of

concept is therefore not an option.

This analysis shows only Sonar to be potentially applicable for our Proof of Concept. As can be read in

section 6.2.1, however, this tool is potentially not optimally suited for implementation in a business

context. We will use Sonar in the proof of concept and, based upon our experience, will advise on the

question of whether or not to use Sonar as a standard component of Info Support procedures.

2.7. On Financial Indicators for Software Quality

In the second phase of this research, conforming to the overview diagram on page 18, we will use

financial indicators to assess software quality, as to obtain data that can be used to validate software

quality measurements made by sourcde code analysis tools. This paragraph provides some

background information about financial software quality indicators.

(Slaughter 1998) states that software quality improvement should be seen as an investment. The

study shows that software defect density improved with each software quality initiative, but at a

decreasing rate. This implies that quality initiatives can (and should) pay off, but a conclusion is also

that it is possible to invest too much in software quality.

Quantification of financial quality is a complex matter. Multiple methods to assess the cost involved

in IT exist, but their focus is usually on operational cost or investment decision making. For example,

the COCOMO model, that was a predecessor of the COQUALMO model, focusses on the financial

impact of defects in software (Boehm 2000). Other examples are (Benaroch 2002) that presents an

approach for managing IT investment risk and (Verhoef 2005) provides an example of a quantitative

investment decision assessment. Sometimes, economical models used in other sectors are adapted

to work for IT projects (Slot 2010).

The link, however, between financial results of software management and source code quality,

appears to be an uninvestigated area of science, as can be concluded from the lack of publications on

this specific topic.

A general conclusion that can be drawn from literature relating IT to finance, is that a lot of financial

resources are spend on ‘challenged’ information technology solutions. Recent estimations indicate

that a annually a budget of 290 billion US dollars is spend on challenged IT, as indicated by in

magazine article (Verhoef 2006). Common types of problems in IT are budget overruns, time

overruns or inadequate functionality (Standish, 2001); these types are also used as a definition of

‘challenged IT’. As Verhoef indicates, reasons for these failures can often be found in new

requirements being introduced in later stages of the development process (‘requirement creep’) or

attempts to do too many things in an amount of time that is too small (‘time compression’). The

reasons for failure found in the Standish report concern three of the four project steering parameters

from Figure 2 on page 19: cost, scope and time.

J.H. Hegeman – Master Thesis – Unrestricted version 42

A potentially relevant detail from the literature is

the following. Verhoef (Verhoef 2005) states that

the amount of resources needed per function point

of a software system increases with the total

number of function points. The curve that is

associated with this statement is displayed in Figure

18. This curve is mainly associated with

development costs, i.e. the amount of resources

needed to ‘add’ functionality. Given the fact that

software management also involves working on

software on a source code level, i.e. when fixing

bugs ore implementing change requests, it seems

reasonable to assume that the relation is applicable there as well.

An important indicator of maintainability is the amount of hours spend on a project during the

maintenance phase, per time period. In a product with a high maintainability, it is easier to

accomplish a task (i.e. find a bug) than in a product with a low maintainability (Woolderink 2007).

Based upon (Verhoef, 2005), however, it can be assumed that given a small and a large project with

an ‘equal’ maintainability, tasks are still easier to accomplish in the small project than in the larger

project. A conclusion that can be drawn from this is that maintainability becomes more important

once a software system becomes larger.

Readily usable and suitable indicators for financial quality that are applicable in this research do not

seem to be available, since the models mainly focus on investment and have a business perspective,

using paradigms like the Total Cost of Ownership. Also, this research calls for simple and transparant

indicators, since we need to prevent force-fitting potentially unvalidated financial quality models to

validate a software source code quality model. Therefore, we have chosen to define our own

indicator, based on available financial data and project management data. Since this information

cannot be considered ‘background’, it is mentioned in the research design section of this thesis (see

paragraph 3.3).

0

50

100

150

200

x=FPs, y=hours/FP (Verhoef)

Figure 18 FPs and hours per FP according to Verhoef

J.H. Hegeman – Master Thesis – Unrestricted version 43

3. Research Design
In the introductory chapter, the goals of this research have been defined. To accomplish these goals,

a research structure has been defined, which is presented in this chapter.

The diagram in Figure 19 provides an global overview of the research steps and the sequence in

which they are carried out. The Proof of Concept phase incorporates an explicit iteration possibility.

All steps are explained in this chapter. Steps indicated in blue have already been carried out in the

research design phase, while green steps concern research conduction. The ‘Preliminary Research

Phase’ consists of the research on tools, models and other background information, as presented in

chapter 2.

Figure 19 Research Design - Steps Overview

J.H. Hegeman – Master Thesis – Unrestricted version 44

3.1. Project Subset Selection

Since all research steps involve the use of actual software projects, a subset of these relevant

software projects at Info Support has been selected to use as sample data in all phases of the

research. We choose to select a subset of MITS projects that is as large as possible, to maximize

statistical significance of the research.

Before making the selection, we define the following constraints:

• The subset will only contain projects that are actively maintained at the time of this research.

By doing this, we omit older projects that were developed or maintained using

methodologies no longer commonly used at Info Support, and we also ensure that the entire

subset consists of project that use a consistent management methodology. Also, we reduce

the risk that we are unable to conduct surveys due to the non-availability of professionals

involved in the project.

• The subset will only contain projects that have a ‘critical mass’. We ignore small, internal

projects that exist only to aid in non-primary processes. The reason for this is that for

projects of those kinds quality is not as important as for projects that Info Support uses to

earn money, so quality standards do not necessarily apply and little expertise and incident

data may be available.

• To be able to perform the research, a number of resources need to be available, being:

o A number of employees to be surveyed on project quality;

o Financial data providing indicators for project quality to be used in the Financial

Investigation Phase (see section 3.3)

o Project source code (in Java or C#) to

be able to perform the Proof of

Concept (see section 3.4)

As mentioned in paragraph 2.1.1, Info Support both

develops and manages software. Management

activities also include additions and modifications, for

which software development process Endeavour is

used. Endeavour is also used for software projects

under development that have not yet taken into use

and therefore are not ‘managed’. Because of this, the

set of projects managed by MITS is a proper subset of

the set of projects of the Professional Development

Center. Since this research assignment is performed at

MITS, and we prefer to have actively maintained projects we choose a subset of MITS projects. Out

of the 22 MITS projects we selected, 9 projects that are deemed suitable. Figure 20 shows a Venn

diagram representing the subset selection. As denoted by the irregularly colored circle, ‘irregular’

projects may exist at Info Support (i.e. projects that are not managed using Endeavour or project that

are not managed using regular MITS procedures). The exact size of this set is unknown. This set has

been left out of this research.

Based upon this, we came to a selection of projects as listed in (confidential) appendix K. We will

denote the nine selected projects with identifiers A through I in the remainder of this thesis. The

Figure 20 Project Subset Selection Venn diagram

J.H. Hegeman – Master Thesis – Unrestricted version 45

selection process is performed by taking the list of all MITS project and removing those entries that

are not suitable for the purpose of this research. There were basically three reasons to consider

projects unsuitable:

- The project was no longer actively maintained (i.e. a contract had ended);

- The project was an internal, minor project that is not to be considered a serious application;

- The project was irregular in some way (i.e. not maintained using MITS standard policies)

Information on project was obtained using information on the internal MITS project portal at Info

Support and in consultation with MITS management.

3.2. Expert Opinion Phase

To obtain information on how software quality is perceived by IT professionals, a survey will be

conducted with professionals at Info Support who are directly involved in the management of

software (i.e. MITS employees). For this purpose the following steps will steps will be taken:

3.2.1. Employee selection

A subset of relevant employees of Info Support will be selected. Relevant employees are those who

are directly involved in software management, namely employees from the Managed IT Services

department. This set of employees includes those who have knowledge of the projects on a source-

code level.

Since the survey contains only closed question (i.e. scales) and does not have complex branching; see

the survey design section 3.2.2, there is no need to ‘physically’ conduct interviews. Participants can

fill out a survey that is send to them by e-mail. This allows us to define a larger group of survey

participants and gain results that have a higher statistical significance.

Because of this, we choose to ask all MITS employees, approximately 30, to fill out the survey. It must

be noted that only approximately half of the potential respondents has direct knowledge of the

source code of MITS project. Others are not expected or required to participate in the survey. The

maximum response rate, therefore, is approximately 16 experts.

3.2.2. Survey Design

The survey has been designed to be able to obtain relevant information from the aforementioned

employees. The questions asked were be designed as to aid us in answering the research question of

this section: How do Info Support experts rate the sample projects on relevant SQALE characteristics?

We will use closed questions so that statistical analysis of the results is possible. Also, we will use

questions with a particularly high level of abstraction, specifically the level of abstraction conforming

to the characteristics of the SQALE quality model that is used by the Sonar tool in our Proof of

Concept phase. Reason for this is that in this way, we get clear results that indicates how experts

perceive quality, based on their experience and intuition. If we would use low-level metrics in the

expert survey and transform the result to general quality characteristics, we would basically be

manually applying a quality model, similar to a model used in tools. This would mean that the

outcomes of calculations made by quality models will be validated by calculations made by other

(non-validated) quality models, which is something we want to prevent.

 A number of relevant constraints for the survey has been identified:

J.H. Hegeman – Master Thesis – Unrestricted version 46

• To quantify survey results, we will not use open questions but use scaled questions instead.

Research suggests that an odd number of items between 5 and 9 is recommendable (Cox

1980). We will use a nine-point scale to maximize the granularity of the results.

• People with different roles may have more or less knowledge about projects concerned. We

therefore introduce a ‘confidence factor’, which participants can use to judge their own

confidence in their ratings. We can use this confidence factor afterward to calculate

weighted averages of given scores.

• We present the scale to participants as an ‘agreement scale’, ranging from ‘totally disagree’

to ‘totally agree’ instead of a numerical scale. The reason for this is that a higher spread in

answers is expected using this method. Rationale behind this assumption is that in a 1-9

scale, participants are expected to give mainly scores in the 6-8 range, since a quality aspect

of a software system is never expected to be perfect nor so bad that deserves the equivalent

of a grading for a failed exam. It should be noted that no literature was found that either

confirmed or invalidated this assumption, so we rely on our assumption-making capabilities

here. For the results to be processed, we will translate the provides answeres back to a nine-

point scale.

The constraints above allow us to define the survey in the form of a set of matrices. Each matrix is

about one of the selected projects. The horizontal axis contains the nine-point scale, while the

vertical axis contains the quality indicators from our definition of quality. An example of what a

survey looks like can be seen in appendix E.

After the survey has been conducted, we calculate our validation information as follows: for each

project from the subset of possible projects as defined in 3.1 and for each quality characteristic as

defined in the survey of appendix E, we take the weighted sum of score of all respondents. The

weights of the scores are the confidence levels on a discrete scale from 0 to 2, while the scores are

the values entered in the survey on a discrete scale from 0 to 8. We reverse this scale so that 0 is the

best score and 8 is the worst score, so that it is aligned with the remediation cost paradigm using in

the SQALE quality model (Sqale 2011) that is used in the Proof of Concept. A description of the

remediation cost paradigm can be found in the background information section, 2.4.6. The scale is

defined as follows:

Dutch text, used in Survey English translation Numerical value

Volledig mee eens Totally agree 0

Sterk mee eens Strongly agree 1

Mee eens Agree 2

Enigszins mee eens Slightly agree 3

Neutraal Neutral 4

Enigszins mee oneens Slightly disagree 5

Mee oneens Disagree 6

Sterk mee oneens Strongly disagree 7

Volledig mee oneens Totally disagree 8
Table 8 Survey scale definition

The questions to be answered have a form that is equivalent to ‘Project <name> is <characteristic>’ ,

for example ‘Project ‘TicTacToe’ is Reliable’. See appendix E for the exact design of the survey.

J.H. Hegeman – Master Thesis – Unrestricted version 47

We choose to include only a subset of the SQALE characteristics, as listed in Table 9. The reason to

not include some characteristics, is that they are irrelevant in our definition of maintainability as

stated in paragraph 1.4.1. Note that the definition of the ‘maintainability’ characteristic in SQALE is

much more narrow than in our own definition (see Table 5 on page 30; the SQALE definition consists

of just understandability and readability, while we include analyzability, stability, changeability and

reliability), which is the reason why we cannot just only include the SQALE ‘maintainability’

characteristic. Also, note that the SQALE definition document considers changeability, reliability and

testability to be mandatory elements when defining a SQALE subset to be used in a specific context

(Sqale 2011). The Reusability of the SQALE definition is not mandatory, and also not implemented in

the Sonar SQALE plugin, so we have no other option than to leave this one out.

Characteristic Include in survey?

Reusability No (not in SQALE)

Portability No

Maintainability Yes

Security No

Efficiency No

Changeability Yes (mandatory)

Reliability Yes (mandatory)

Testability Yes (mandatory)

Table 9 SQALE characteristics subset selection

It should be explained why we do not use exactly the quality indicators from definition 1.4.1 in our

survey, since these are quality indicators we eventually want to be able to calculate values for. The

reason for this is that the mapping between this definition and the SQALE characteristics is

particularly non-trivial. By using the same characteristics in the survey and the tool assessment, no

mapping is needed to calculate correlations, so we avoid the risk that an ill-defined mapping causes

us to be unable to find a correlation, or to incorrectly find a correlation. Mapping validated tool

characteristic values to our definition of quality will be performed in the final phases of this research.

If we are unable to define a good mapping, we will have to conclude that it is advisable to express

quality in terms of the SQALE characteristics instead of the maintainability aspects from definition

1.4.1.

The calculation of project quality indicators from the survey results yields for each project a score for

each of the selected quality characteristics, on a scale from 1 to 9. We presume this scale to be

equivalent to the SQALE Kiviat value for the individual characteristics, which has a scale from 1 to 5.

The transformation of values from one scale to the other can be performed by simple scaling. The

correlation between survey results and tool measurements is one of the expectations of this research

(see 3.5). The results of the survey will be used to validate the outcomes of the tool-based

assessment phase as described in section 3.4.

3.2.3. Survey Conduction

The described survey has been conducted by asking by e-mail the Info Support employees of the

Managed IT services department to participate. In an ideal situation we will have a 100% response

rate, we do not consider this to be a necessity. We do however, define a minimum response rate of

67% of all potential respondents, and will increase the response period and send reminders if this

rate is not met at the end of the initial participation term. The survey answers the research sub

question: how do Info Support experts rate the sample projects on relevant SQALE characteristics?

J.H. Hegeman – Master Thesis – Unrestricted version 48

3.2.4. Survey Conclusions

Conclusions will be drawn from the survey results. An answer to the research question will be

formulated. This also provides us with the project quality assessment results as described in the

Survey Design section, providing validation data for the tool-based quality assessment.

Of course, it should be emphasized that expert opinions are opinions, and therefore inherently

subjective. It is, however, assumed that these opinions on quality reflect the ‘actual’ quality of

software. This assumption, which is supported by the fact that we are dealing with experts that work

on the projects on a daily based as well as the fact that we introduced confidence scores in the

survey, is needed to be able to use the survey results as validation data. We thus define the survey

results to provide an adequate taxonomy of the quality of the projects.

3.3. Financial Investigation Phase

To be able to objectively assess the quality of software in relation to financial results, we will conduct

an investigation of financial project results. Goal of this investigation is to determine the financial

quality for each element of the selected set of projects, so that these can be compared with quality

indicators resulting from source code analyses and expert opinions. The following steps will be taken.

3.3.1. Financial Indicator Calculations

A Financial indicator will be defined and calculated for each of the projects. As can be read in the

theoretical background section 2.7, literature research did not provide sufficiently suitable

information to construct a quality indicator. Therefore, we must define this indicators ourselves.

Consistent with the expert opinion phase, we choose to limit the number of transformations applied

to financial data to calculate the indicator, since we want to prevent introducing our own non-

validated ‘financial quality model’ to generate validation data. Indicators therefore will be as basic

and transparent as possible.

3.3.1.1 Cost Types

In financial terms, hours spend on a project can be expressed in currency, by multiplicating the

amount of hours by the (average) salary per hour. For the purpose of this research, we neglect

indirect costs and only consider man-hour costs involved in management or development of projects,

which is a choice consistent with existing cost models (i.e. Atterzadeh 2010). Examples of ommitted

indirect costs are costs of facilities needed to manage software, amongst which buildings, computer

hardware and support personell, so costs that cannot be directly related to one project. At Info

Support, man hours are registered using codes for different types of activities. We choose to only

include the ‘incident’ and ‘problem’ codes, as these are the categories that are related to

maintainability in a way that can indicate quality. We explicitly exclude hours booked due to

customer requests (i.e. ‘change request’, ‘ service request’ or ‘release’ codes). The mentioned codes

fully cover the set of available codes.

A small investigation shows that the following information is obtainable:

• For each project, the actual number of hours spend on that project during a specific time-

period (i.e. a year), per type of cost (i.e. incident, problem, service request)

• The size of each project.

J.H. Hegeman – Master Thesis – Unrestricted version 49

3.3.1.2 Function Points vs. Lines of Code

We prefer to look at a project size in Kilolines of Code rather than function points, since KLOCs are

better measurable and measurements have a better availability KLOC measurements are available

from the tool used in the Proof of Concept. Also, evidence exists for a relationship between a project

size in lines of code and the number of function point that is approximately linear (Dolado

1997)(Caldiera 1998). The exact relationships depend on the definition of the function points and

lines of code, but in general the relationship has the form:

 S = a * F + C

 Where:

 - S = the size of the project (the number of Lines of Code)

 - a = the scalar (additional LoC’s per FP)

 - F = the number of Function Points in a system

 - C = a constant to account for overhead

An Info Support sample project indicates values of approximately C = 20.000 and a = 100. Further

analysis could be used to narrow down these values and calculate their reliability. We consider this a

suggestion for future research, especially due to the fact that no research that explicitly focuses on

this issue appears to have been conducted, but for the purpose of this research, the knowledge that

we can consider the relationship between function points and lines of code to be linear is sufficient,

because it allows is to consider FP’s and LOC’s to be equivalent.

3.3.1.3 Counting Lines of Code

While counting code lines, we chose to use the project size measurements as obtained by Sonar, the

tool used in the Proof of Concept (see 2.6.2.2 on Sonar and 3.4 on the PoC). This indicator ignores

white lines and comment lines. By using this Sonar measurement, we assure a constant definition of

‘line of code’ over the projects. Some issues:

- A slight difference in the amount of lines of code needed to program specific functions or

constructions may exist between Java and C# project. We assume this difference to be

neglectable and will ignore this. This is a reasonable assumptions, because:

o Java and C# are syntactically similar object-oriented languages;

o Strong Info Support coding rules imply that code follows conventions that are similar for

both languages.

A practical comparison of Java and C# can be found in (Chandra 2005).

- The Project may contain generated code. For example, this may be code that is generated by a

GUI designer. Sonar automatically skips generated code when it is labeled as such, but we have

no way of knowing for sure that all generated code, and only generated code has this label. This

will not affect resulting quality indications, as long as the amount of generated code either:

o Correctly automatically skipped, and/or

o Is neglectable, and/or

o Constitutes a constant percentage of the total project’s code.

No measures to verify or falsify these possibilities are available. We therefore assume some

combination of the possibilities be true, which implies that we do not consider generated code to

pose a problem. If during the Proof of Concept phase we get reasons to believe this assumption

is not valid, we will deal accordingly.

J.H. Hegeman – Master Thesis – Unrestricted version 50

3.3.1.4 Financial Quality Indicator

We have established that the amount of effort put into a managed project during a specific time

period is an indication for quality. The relationship between hours and money is linear in the context

of Info Support, by definition. We also have established the equivalence of Function Points and Lines

of Code. Figure 21 displays the established relations.

Figure 21 Relationship between time, money, LoC and FP in projects

The relationship between the ‘upper’ and ‘lower’ part of the diagram in Figure 21 is considered to be

linear (Albrecht 1983). As stated in the background information section 2.7, however, indications

exist, that the amount of work per function point increases linearly with the size of the product

(Verhoef 2005). This would imply that the size of the projects needs to be exponentially accounted

for. From the established relations, we derive the following indicator for quality:

Q = R / S
F

Where:

- Q = the quality indicator (in €/KLOC)

- R = the actual amount of hours spent on a project in 2010

- S = the size of the project in KLOCS

- F = the size weight exponent

For now, we assume F = 1, and reconsider this choice if research results call for it. Included in the

labour costs are all man-hours assigned to a specific project in 2010, but since we focus on

maintainability in this research, only hours spend on software management (assigned to category

‘incident’ or ‘problem’) will be included, as mentioned earlier.

J.H. Hegeman – Master Thesis – Unrestricted version 51

We selected 2010 as the period to look at. Several issues need to be taken into account when making

this selection. We assume the choice of the full year 2010 to be the right amount and period of time

considering the following factors:

• We cannot select a period that is very short; since the number of reported incidents would

be very low and potentially non-representative for longer periods.

• We cannot select a period that is very long; since projects change during time; they are

added or removed to the MITS portfolio and projects in the portfolio are modified and

improved to increase quality and suit customer needs.

• Since we use recent source code, we cannot use data that is too old; since issues would

concern much older versions of software that we analyze. Also, expert opinions retrieved are

about the status quo of the projects.

This indicator thus calculates the ‘management time investment per kiloline of code in a specific time

period’, i.e. the amount of effort spent on a project, during a fixed time periode, per kiloline of code.

We assume the project size to be constant during the period we looks at. This is considered a

reasonable assumption, since the software development phase has already finished before MITS

starts managing projects. The only factors influences source code size are fixes and extensions, which

are assumed to have only a limited impact on the change in project size.

As mentioned in the background information section, the amount of effort needed to perform a task

increases with the size of the project (Verhoef 2005). It was, at time of defining the research

structure, not yet clear if this should be taken into account in the calculations of this research. This is

due to the fact that investigated projects have a modalar structure, and we do not know as of yet if

this could compensate for the mentioned effect. If the modular structure does not compensate for

the mentioned issue, we should transform the quality indicator formula by increasing the exponent

to the size variable with a value conforming to the curve in Figure 18 on page 42 to compensate for

this.

3.3.1.5 Financial Investigation Conclusions

Conclusions will be drawn from the calculations, and expectations for the outcome of the automated

source code assessment will be formulated: What is the financial quality, expressed as hours/KLOC,

of the sample projects? Also, this step will provide us with an indication of project quality that will be

used as validation.

3.4. Proof of Concept Phase

In this phase, we develop a Proof of Concept in which we use software tools to assess code quality,

providing us with quality indicators. We then compare these indicators to the financial indicators and

survey results obtained in the earlier phases of this research. The process is based upon ISO14598 as

described in theoretical background section 2.3.2. The following steps will be taken.

3.4.1. Proof of Concept Setup

Setup up a proof of concept using the tools mentioned in this proposal and the set of software

projects identified. In the setup step, we setup up the tools on a computer system that has access to

the source code of identified projects so that we are able to perform analysis. A log has been kept

during the setup procedure and added to this thesis (see appendix H), so that it procedure can be

repeated.

J.H. Hegeman – Master Thesis – Unrestricted version 52

3.4.2. Software Quality Assessment

Assessment of software quality using this proof of concept. For each of the software projects

identified in the project subset identification, we will determine the value of a selected number of

quality characteristics using the selected software tools.

3.4.3. Assessment Result Analysis

Now that we have expert opinions, financial indicators and quality indicators, we can answer

research sub question #3: How are the sample projects rated by a Sonar SQALE setup? Further steps

will be taken to yield more analysis results if the initial results call for this.

3.5. Research Results Phase

3.5.1. Correlation Calculations

Finally we will summarize the results

and answer the main research question:

To which extend can software tools,

incorporating quality models, provide

quality information that matches Info

Support experiences and expectations?

In the conclusion phase, we will apply

statistical analysis to the quantitative

results of the earlier research phases, to

be able to draw conclusions about

correlations. Also, we will elaborate on the generalizability of research results to a context that is

broader than Info Support.

Since at this point we will have completed the three research phases, we have the following

information available:

• For each selected project, for each

selected quality characteristic: a score on

a scale from 0 to 9, indicating the

weighted average expert opinion, to be

used as validation data. Confidence

scores (0, 1 or 2) are used as weights.

• For each selected project, a general

financial indicator indicating financial

project success, to be used as validation

data.

• For each selected project, for each quality indicator from our quality definition, for Sonar: a

score on a scale from 1 to 9, indicating the quality as measured by the tool, to be validated

using the validation data.

This quantitative information will be the input for our statistical analysis. Specifically, we expect a

linear dependency between all three datasets, and therefore will calculate the Pearson Product

Moment Correlation Coefficient (Rodgers 1988) for each of the combinations of the three data

Figure 22 Examples of linear relations and their Pearson coefficient

values

Figure 23 Expected quality indicator relations

J.H. Hegeman – Master Thesis – Unrestricted version 53

sources. The reason to choose this coefficient is that it is suitable for linear dependence and non-

sensitive for scaling, which makes is suitable for the use in this project. It also

This correlation coefficient provides a value between -1.0 and +1.0. A higher absolute value of the

coefficient implies a stronger correlation, either negative or positive. Figure 22 shows examples of

scatter plots of the values of two variables and the Pearson value of their correlation. For all three

relations between the datasets, we expect to find a correlation, as indicated in Figure 23.

Interpretation of the actual value depends highly on the context of the research (Cohen 1988); there

is no universal definition of ‘high’ or ‘low’ values. In the context of this research, due to the

subjective nature of the expert opinions and our unfamiliarity with the correlation between financial

quality and source code quality, we do not expect to correlation values near 1 or near -1. Therefore,

we define the following qualifications:

Abs. value Qualification

[0.0 – 0.1) Insignificant

[0.1 – 0.3) Low

[0.3 – 0.5) Medium

[0.5 – 0.7) High

[0.7 – 1.0] Very high
Table 10 Correlation Coefficient Qualifiactions

We define the following expectations for the relations. In all cases, the direction of the correlation

will be so that a higher quality on one scale correlates with a higher quality on another scale,

although a higher quality may be indicated by a lower value (which is that case with the financial

indicator).

• At least a ‘medium’ correlation between source code QI and expert QI

• At least a ‘low’ correlation between expert QI and financial QI

• At least a ‘medium’ correlation between source code QI and financial QI.

The reason to expect merely a ‘low’ correlation between expert QI and financial QI is that we use

these two data sources to validate results of the source code QI and not to validate each other. We

do not need to draw conclusions from this correlation to be able to answer the research questions.

Nonexistence of a correlation, however, could be qualified as ‘strange’, since this would imply that

we validate values using two datasets that are themselves apparently uncorrelated or almost

uncorrelated. A significant negative correlation would be even more strange and is also unexpected,

since this would imply that projects which are considered ‘good’ be experts actually have a low

maintainability based upon financial data and vice versa.

We also have reasons to believe that no very high correlations between Sonar SQALE measurements

and validation data can be seen. These reasons are seemingly reasonable assumptions that cannot

be falsified, rather than provable facts. An example is the inherent subjectiveness of opinions and the

sensitivity for circumstances. Since this is a topic of discussion, more information is provided in the

discussion section of this thesis (chapter 9.2).

3.5.2. Statistical Significance

The fact that we have a relatively small project sample size (n=9) implies that we either have to reach

high correlation values or accept a lower confidence when making statements about the statistical

J.H. Hegeman – Master Thesis – Unrestricted version 54

significance of research results. The critical values for the Pearson Correlation Coefficient that apply

in our one-tail test are displayed in Table 11 (Moore 2006). In this case, DF, the number of ‘free

degrees’, equals 9 – 2 = 7.

Confidence 0.25 0.10 0.05 0.25 0.01 0.005

Value 0.2596 0.4716 0.5822 .6664 .7498 .7977

Table 11 Critical Pearson values (DF=7)

This table should be read as follows: in the context of this research, to be able to state that a positive

correlation exists with 90% certainty (1 minus 0.10), the Pearson correlation coefficient needs to

have a value of at least 0.4716.

3.5.3. Procedure

Figure 24 shows a flowchart of the procedure of calculating correlations and reaching conclusions. It

shows that we will consider validation data to be true, and modify the tool’s quality model

configuration to increase the correlation if possible. This way, we also answer the fourth research sub

question: Which methods to improve the quality of the quality model configuration exist?

J.H. Hegeman – Master Thesis – Unrestricted version 55

Figure 24 Correlation calculation & conclusion flowchart

The diagram in Figure 24 requires some elaborated. At the top of the diagram, we see the start of the

process. The first step is to calculate the correlation between the two sets of validation data. This

data is fixed, so independent from the actual correlation we continue, but it the correlation is not

what we expect, we elaborate upon why that may be the case. After this, we calculate correlations

between validation data and Sonar measurements. We then enter a loop in which we recalibrate the

model and recalculate correlations as long as we see possibilities to increase them. Finally, we come

to a conclusion.

3.5.4. Calibrating the Quality Model Configuration

Initially, the quality model is configured by enabling all possible rules available in SQALE with default

parameters and applying a default mapping. If no default mapping is available, we will manually map

rules to seemingly appropriate characteristics.

There is no reason to assume that using the initial quality model configurations, optimal correlations

of measurements results and validation data will be obtained. After the initial correlations have been

J.H. Hegeman – Master Thesis – Unrestricted version 56

calculated, therefore, we will attempt to improve the correlation by reconfiguring the quality model.

This reconfiguration procedure can be seen as a calibration attempt, in which we try to make

modifications to the quality model configuration that make it better reflect Info Support coding

standards and policies. There is a number of possible ways to do this, which can be combined in a

calibration procedure.

3.5.4.1 Calibration Methods: selecting rules

The following list sums up a number of methods that can be used to calibrate the quality model.

These methods are intended to be used to decide whether or not to include rules in the

configuration and to configure individual rules.

1. Iterate over all existing rules (approximately 1350) and for each rule, decide whether or not it

should be enabled. Use the provided functions to initially enable all rules, and during the

iterations disable the individual rules that are not applicable for the context (in case of the

Proof of Concept aspect of this research, these are rules that are not a coding standards at

Info Support) No knowledge of the quality model is needed to perform this task. Of course,

general knowledge of Java or C# is needed to be able to determine whether or not to disable

rules, as well as knowledge of context-specific coding rules.

2. Perform the same iteration, and make an estimation of the remediation cost per violation for

each of the enabled rules. By doing this, the remediation costs of the rules better

approximate the actual situation. The estimation process could be performed by multiple

people, where the average result is used as output value. By making the estimation with

more people, the quality of the estimation is assumed to increase, and with it the quality of

the quality model configuration.

3. The iteration can be performed by more than one person. For example, instead of one

person (a Java specialist for the Java rules and a C# specialist for the C# rules), a small group

of specialists for one of the languages could iterate the rules together, i.e. using a beamer,

and discuss the relevance and remediation cost for each of the rules. This approach is

thought to provide a higher decision-quality, since consensus must be reached among the

participants. Also, this approach is thought to be more fun than a single-person approach,

since it will incorporate interesting discussions about what would normally be a very

procedural task. It is recommended that these sessions do not last for many hours, but are

split up in multiple smaller sessions due to the required attention and concentration.

4. Remove duplicate rules (which may exist if multiple metric tools used by Sonar incorporate

the same metrics) from the rule set. The effect of duplicate rules is that violations are

counted twice, which causes remediation costs to be reported to be too high.

5. Remove ‘unmatched rules’, i.e. rules that only exist for either Java or C#. If a rule does not

exist for both languages, the violation will not be considered an issue in one of the

languages, which leads to inconsistencies in quality assessments. An approach to implement

this suggestion would be to take a list of all Java rules (‘list 1’) and a list of all C# rules (‘list

2’), and for each element on list 1 find an equivalent counterpart on list 2. If this is not found,

remove the rule from list 1. When list 1 is completed, repeat the procedure with swapped

lists. Of course, rules that are important but language-specific in the sense that the languages

differ so that there can be no equivalent for a rule, should be kept in the model. Reason for

this is that the coverage of potential problems is more important than the balance between

C# and java assessments.

J.H. Hegeman – Master Thesis – Unrestricted version 57

6. Reverse-engineer the assessment results by eliminating rules that have too much impact on

the results. If a single rule constitutes a significant faction of the total remediation cost for a

project, this could be due to the fact that the rule is not applicable. For example, a rule called

‘Tabs must not be used’ will have an extremely large number of violations if tabs are actually

used by default for indenting source files and is irrelevant in that context. Analysis will show

large remediation costs for unnecessary rules, which can then be eliminated.

7. Calculate the ‘optimal’ rule set by iterating all possible configurations. An approach would be

to run analysis with all rules enabled, and register the remediation costs per rule per project

in a to-be-written utility program that iterations the possible combinations of rules,

calculates total remediation costs and the correlations with validation data, searching for the

maximum correlation. Main problem with this approach is it’s computational complexity,

which is exponential in the number of rules. The number of violated rules is over 250, making

it impossible to iterate all combinations in a reasonable amount of time. It is possible to

approach the optimal configuration by ignoring all rules with total violation costs below a

certain threshold, or by selecting the top-20 or top-30 of violated rules.

Note that some suggestions are quite labor-intensive to implement. For example, the removal of

duplicates or unmatched rules have a quadratic complexity in the number of rules to consider, and

the worst part is that it can only be performed manually. See Tabel 12 for an overview.

Method Worst case complexity

(n=#rules, m = #characteristics)

Auto/manual

Enable/disable rules O(n) Manual

Estimate Remediation cost O(n) Manual

Evaluate mapping O(nm) Manual

Remove duplicates O(n2) Manual

Remove unmatched rules O(n2) Manual

Reverse-engineer - Manual

Calculate optimum 2n Automatic
Tabel 12 Calibration method summary

3.5.4.2 Calibration methods: rules – sub characteristic mapping

Aside from deciding which rules are important and which are not, an appropriate mapping between

rules and sub characteristics should be configured. Since SQALE ratings are calculated per

characteristic, it is more relevant to associate rules with the correct characteristics than which sub

characteristic to use (actually, the concept of sub characteristics does not appear to have much

purpose in SQALE). When defining the mapping, it is important to note the hierarchical concept of

the characteristics as described in paragraph 2.4.6. It is recommended to perform the ‘rule selection’

phase of the calibration process before the ‘rule mapping’ phase. The following method applies:

Iterate all enabled rules, and per rule decide on the characteristic to map to by iterating the

characteristics in inversed hierarchical order. For each characteristic, decide whether or not the rule

influences the quality of that aspect of a software artifact. If so, map the rule. If not, go to the next

characteristic. If a rule does not seem to apply for any characteristic, reconsider whether or not it

should be enabled at all, since an enabled rule must be mapped to one characteristic.

To clarify this method, consider the following example: suppose we have chosen to include a rule

named ‘Missing Switch Default’. This Java rule is violated if a switch statement is used that has no

J.H. Hegeman – Master Thesis – Unrestricted version 58

default section. To map this metric to a characteristic, we follow the following steps as depicted in

Figure 25. The sequence of characteristics to iterate is consistent with the SQALE hierarchy (see

Figure 12 on page 29). Also, the definitions of the characteristics need to be kept in mind (see

appendix E). The flow through the flow chart is, in this case, as follows:

- A missing switch default does not impact the testability. Motivation: the effort needed to write

(unit) tests does not increase or decrease when violating this rule.

- A missing switch default does impact reliability. Motivation: a switch statement is defined

because some variable-value-dependent work needs to be done. A switch statement without

default is likely not to perform any work on some variable values. Essential steps in the program

flow may not be performed. This makes the software unreliable in case of unexpected input.

Changes in the software that cause the input to the switch statement to change can especially

make the system unreliable.

Note that the motivation aspect of each choice is inherently subjective; no determinate procedure to

define the mapping is available. In general, be sure to use motivations that are reasonably convincing

and not too far-fetched. Reason for this is that practically any rule could be claimed to indirectly

impact testability, but allowing this to influence the mapping is unlikely to result in a balanced

distribution of rules of characteristics.

Figure 25 Rule - characteristic mapping flowchart

J.H. Hegeman – Master Thesis – Unrestricted version 59

A different approach, which can be used with an existing, unbalanced configuration as a starting

point, is the following:

- Given the list of rules associated to a characteristic that

has relatively many rules, decide for each rule if it may

be brought down one level in the hierarchy. For

example, for all rules associated to the ‘Reliability’

Characteristic, decide whether or not the rule may also

impact ‘Testability’. In the configuration depicted in

Figure 26, this will have a positive impact on the balance

if this is the case for 1 or more rules, which seems likely.

This approach has potential in cases in which characteristic definitions were interpreted too strictly

(i.e. a too strong motivation is required before a rule is accepted to be associated with a

characteristic), causing rules to be associated with characteristics that are higher in the hierarchy

than needed. Loosening up the mapping using this method can have a positive impact on balancing,

provided the investigated characteristic has a much higher rule count than the one below it in the

hierarchy.

3.5.4.3 Applied Configuration Procedure

For the purpose of this research, due to resource constraints we choose to perform a relatively

simple calibration and use the results to formulate suggestions for further calibration. The calibration

procedure is designed as follows:

1. Our starting point will a configuration with as many rules enabled as possible, and a default

rule characteristic mapping.

2. Initially, we will use the reverse-engineering method to identify rules or rule parameters that

are not applicable at Info Support, as described in the method description in the previous

section. This should eliminate the worst invalid violations.

3. Using the resulting configuration, we will analyze the project set and present and analyze the

results.

4. Further calibration will be performed by using Info Support knowledge to enable, disable and

configure rules. We prefer to use configuration files for tools used by Sonar for this purpose.

5. Afterwards, a new analysis of the project set will be performed and again the results will be

analyzed. From this, conclusions will be drawn about the calibration procedure, potentially

leading to new ideas for further calibration.

6. Now that the rule set has been optimized, the next step is to optimize the rule-characteristic

mapping. We will perform the second method described earlier to accomplish this., re-

evaluating the mapping of rules associated with characteristics that have too many.

Figure 26 Re-evaluation example diagram

J.H. Hegeman – Master Thesis – Unrestricted version 60

J.H. Hegeman – Master Thesis – Unrestricted version 61

4. Validation Data Collection Results: Expert Opinions

4.1. Data Collection Process

Initially, the survey was sent by e-mail to 32 MITS employees. Approximately 50% of these

employees had source code level knowledge of one or more of the selected projects. 11 employees

filled out the survey. Additionally, a number of employees indicated, by e-mail or face to face that

they were unable to answer any of the questions due to lack of source code level knowledge of all of

the projects. In total, 22 project ratings where received. This is an average of 2.0 projects per

employee who did return a survey form, and an average of 2.44 gradings per project. There was

some variation in the number of responses per project. For an overview of raw survey results, see

(confidential) Appendix F. Figure 27 shows a diagram with global statistical information. For each

project, two values are listed:

• The number of respondents that rated the project, indicated in blue (left column for each

project). Each of these respondents provided 4 ratings; one for each characteristic.

• The average variance in answers per characteristic, indicated in red (right column for each

project). Note that for project H, the average variance is undefined due to the fact that there

was only one respondent. The average variance of all other projects is 1.1.

Figure 27 Response frequencies and answer variance per project

Since it is inherent to the MITS structure that for each project only a small number of specialized

employees exist, the average of 2.44 gradings per project conforms to expectations. It has been

verified that for the project with only one respondent, no other potential respondents exist.

4.2. Expert Project Ratings

To calculate project characteristic and overall ratings, we applied the calculation method as

described in the research design. We use the confidence rating as a weighing factor (value 1 or 2) for

a weighted average of the ratings per characteristic, and take the sum of the four ratings that are

calculated this way, we get the project ratings. The scale for these ratings is [1..9], consistent with

the survey definition. Note that the scale is ‘reversed’ to conform to the remediation cost paradigm;

see research design section 3.2.2. The ‘Overall’ column shows the sum of the ratings of the four

characteristics, again consistent with the remediation cost paradigm. We explicitly chose not to take

the average rating, since this would make the format of the data inconsistent with SQALE

0

1

2

3

4

5

A B C D E F G H I

No. Of

respondents

Variance

Sum

J.H. Hegeman – Master Thesis – Unrestricted version 62

measurements and more difficult to compare, since SQALE also uses addition of remediation costs

per characteristic to calculate overall quality (see 2.4.6).

4.3. Characteristic Correlations

We also investigated the correlation between the ratings provided by experts for all combinations of

2 out of 4 characteristics. The results are displayed in Table 14. It is interesting to see that all

correlations are positive and have a value that we qualify as ‘medium’ to ‘very high’ according to

research design section 3.5.1. This implies that if an expert rates a project high on one quality aspect,

he/she is likely to provide a similar rating for other aspects. It is not necessarily the case that a

project with a good rating for one characteristic will also receive a good rating for another

characteristic when analyzed by tools. This could mean a few things:

• Experts are simply right and a project with a good score on one characteristic is likely to

receive a good score on another characteristic as well. We should be able to test this by

performing the same characteristic correlation analysis on quality measurements by Sonar.

• Experts give individual characteristic ratings that are implicitly based upon a general opinion

on projects. For example, an expert may consider a project to be ‘bad’ in general, and when

filling out the characteristic ratings may just indicate which aspect is even worse than

another. If this is the case, and if project characteristic scores should not actually correlate,

we will see this also in the Sonar measurement results.

• Another explanation is a conceptual overlap between characteristics. Experts may

conceptually perceive the characteristic definitions to be non-distinct, or at least the

boundaries to be unclear. This would imply a theoretical expectation of correlations between

the characteristics.

Characteristic 1 Characteristic 2 Pearson correlation Interpretation

Analyzability Testability 0,84 Positive, very high

Analyzability Reliability 0,52 Positive, high

Reliability Testability 0,51 Positive, high

Analyzability Changeability 0,47 Positive, medium

Changeability Testability 0,38 Positive, medium

Changeability Reliability 0,30 Positive, medium

(average) 0,50 Positive, high
Table 14 Expert Characteristic Score correlations

Project Analyzability Changeability Reliability Testability Overall

A 1.3 3.7 1.3 1.0 7.3

B 3.7 3.3 4.0 5.7 16.7

C 4.0 3.2 2.4 3.6 13.2

D 3.5 2.0 2.3 5.3 13.0

E 2.0 3.0 2.5 4.0 11.5

F 2.7 2.7 4.3 2.7 12.3

G 2.5 2.5 1.8 3.0 9.8

H 2.0 1.0 2.0 3.0 8.0

I 0.7 0.3 1.7 0.0 2.7
Table 13 Initial average project ratings from survey

J.H. Hegeman – Master Thesis – Unrestricted version 63

5. Validation Data Collection Results: Financial Indicators
In this research phase, we have collected financial data to determine a financial quality indicator for

each of the projects we have investigated. We have used the indicator as defined in paragraph 3.3.1.

A number of issues was encountered while attempting to retrieve the necessary data. Details of

these issues are left out of the unrestricted version of this thesis.

For these (confidential) reasons, we should keep in mind the possibility that the reliability of this

validation data low. Within the context of this research, no possibilities to increase the reliability

were identified. Due to the redundant nature of tool assessment validation (using both expert

opinions and financial data), we choose not to redesign this research aspect to overcome this

potential lack of reliability.

Using the methods above, we managed to retrieve a quality indicator value for each project. The

amount of hours is the sum of the registered management hours in the categories ‘problems’ and

‘incidents’, in 2010. For Project I, no incidents were registered, so the value is 0.0. Note that due to

the linear relationship between hours and money, these should be considered equivalent and we do

not have to perform transformation calculations.

Project Project size

(LOC)

Total relevant

mgmt. hours

(x)

No. of incidents x/KLOC

A 51,888 60 21 1,127

B 83,313 31 7 0,377

C 62,666 36 19 0,574

D 62,293 7 5 0,057

E 128,664 172 17 1,336

F 51,629 85 11 1,646

G 64,189 276 25 4,300

H 12,035 15 1 1,246

I 2,377 0 0 0,000

Table 15 Financial Quality per Project

J.H. Hegeman – Master Thesis – Unrestricted version 64

6. Proof of Concept
This chapter shows how an attempt to setup Sonar, with all required tooling to assess both Java and

C# projects using the SQALE method, was successfully setup.

6.1. SQALE implementation in Sonar

Some implementation-specific remarks on the SQALE plugin for Sonar are to be noted. Additionally,

some bookkeeping activities need to be performed in order to effectively use the setup.

6.1.1. Implementation characteristics

The Sonar tool uses a plugin to implement the SQALE model. This plugin conforms to the SQALE

description as provided in background information section 2.4.6 and described in (Sqale 2011) with

the following implementation-specific remarks:

- The implementation does not implement the ‘Reusability’ characteristic. This presents no

problem, since the selected subset of characteristics to use does not include ‘Reusability’ (see

research design section 3.2.2);

- The implementations allows the user to remove all of the characteristics individually, while the

standard considers some of them to be mandatory;

- The implementations remediation function options are limited to a constant value (expressed in

units of time) per violation or per file containing one or more violations, while the standard

allows for more complex functions to be used.

The SQALE definition provides a small set of Conformity Criteria. It has been verified that the

implementation meets these criteria.

6.1.2. Mapping of SQALE characteristics to quality definition

Before we can use our proof of concept setup, some bookkeeping needs to be performed. The

quality indicators used in the quality model of the tools as well as in the expert opinion survey do not

fully match the definition of quality as presented in paragraph 1.4.1. This discrepancy exists due to

the fact that a definition of quality was part of the initial research assignment, while during the initial

research phase it was found that tools and models do not fully conform to this definition. Table 16

presents the two definitions. The definition of ISO 9126 characteristics can be found in (Chamillard

2005). The SQALE quality model definition document (Sqale 2011) does not provide a clear definition

of the model’s characteristics in text. For this reason, we will need to use information on the default

sets of assigned sub characteristics to assess this definition. In Table 16, the last column lists these

sub characteristics and names, as an example, some assigned metrics or metric categories.

Quality (by

definition of

this research)

Definition: the

capability of the

software product…

Quality (as used in

tools based upon

SQALE)

Assigned sub characteristics

Analyzability

… to be diagnosed for

deficiencies or causes

of failures in the

software, or for the

parts to be modified to

be identified.

Maintainability

Readability, understandability

(i.e. conventions for naming,

lengths and code layout)

Changeability … to enable a specified

modification to be

Changeability

Architecture, data and logic

related changeability (i.e. metrics

J.H. Hegeman – Master Thesis – Unrestricted version 65

implemented. concerning coupling, visibility,

abstraction, structure of if-

statements)

Stability … to avoid unexpected

effects from

modifications of the

software

Reliability Architecture, data, instruction,

logic and synchronized related

reliability, exception handling,

fault tolerance, unit tests (i.e.

metrics concerning bad coding

practices, unit test coverage)

Testability … to enable modified

software to be

validated

Testability Integration level and unit level

testability (i.e. parameter

number, cyclomatic complexity

Maintainability

Compliance

… to adhere to

standards or

conventions relating

to maintainability

Table 16 Qualiy Definitions Overview

A mapping between these two sets of characteristics is displayed in Figure 28. This mapping is ‘own

work’ and based upon our experience with ISO 9126 and SQALE acquired in this project. As with any

mapping, a few comments should be made:

• The ‘maintainability compliance’

aspect is not mapped to its ‘own’ SQALE

characteristic. When looking at the

metrics assigned to the ‘maintainability’

characteristic of SQALE, we see that

metrics concerning the naming and

length of field and methods are covered

there. This indicates that the intention

of the ‘maintainability compliance’

aspect is, as well as ‘analyzability’,

covered by the ‘maintainability’

characteristic. We therefore choose a 2-

to-1 mapping here.

• The idea behind the ‘testability’

aspects seems to differ slightly between

the standards. In the ISO definition,

testability is about the ability to test,

while in SQALE, testability appears to be

about the ability to develop tests. A

result of this is, for example that ‘unit

test coverage’ is part of the Reliability

characteristic instead of Testability.

Since in SQALE, reliability implies

testability (see 2.4.6), we do not consider this to be a problem. If we did, a solution could be

to use the flexibility of SQALE to reassign the coverage metrics to a testability sub

characteristics.

Figure 28 Mapping of defined quality aspects to SQALE

characteristics

Analyzability

Changeability

Stability

Testability

Maintainability

Compliance

Maintainability

Changeability

Reliability

Testability

Research Definition (ISO) SQALE Definition

J.H. Hegeman – Master Thesis – Unrestricted version 66

• The fact that SQALE has a ‘maintainability’ characteristic could be confusing. The definition of

this characteristic is more narrow that the name might imply, which allows us to map it to

our ‘analyzability’ aspect of the ISO standard, which is in itself a sub aspect of our definition

of maintainability as defined in paragraph 1.4.1. This way, we have made the narrowly

defined SQALE-maintainability characteristic an aspect of our broadly-defined ISO

maintainability. All left-column items in Figure 28 constitute maintainability according to our

own definition.

6.1.3. Relationship with ISO 9126

The relation between the ISO 9126 quality characteristics and SQALE is as follows and depicted in

Figure 29 (page 67):

The maintainability characteristic of the ISO standard is the root of the SQALE tree. The full subtree

of ISO maintainability is also part of the SQALE tree, where it should be noted that ‘Maintainability

compliance’ is covered by the analyzability sub characteristic. Not that in SQALE, the term

‘Maintainability’ is used for what ISO calls ‘Analyzability’. ISO characteristics Functionality and

Usability cannot be covered by source code analysis, since these concern the extent to which

software meets requirements and the extent to which users can efficiently use this functionality

through the user interface. The Reliability aspect of ISO is covered by the SQALE’s Reliability aspect.

On a source code level, ‘stability’ can be considered equivalent to ‘reliability’, which is the reason

why these are also linked. Efficiency and Portability can optionally be enabled as part of the SQALE

standard, but are not part of the ‘maintainability index’ as defined in the original assignment (see

1.1).

Figure 29 depicts the mapping between ISO 9126 and SQALE. Red lines show equivalence relations.

Note that in a few occasions there is a many-to-one relation. This is due to the fact that when we

limit ourselves to source-code based analysis, some concepts become equivalent. Green colors

indicate mapped characteristics, yellow colors indicate optionally mapped characteristics and red

characteristics cannot be mapped due to reasons stated earlier.

Note that no explicit mapping is available from literature. The mapping presented here is ´own work´,

derived from the definitions of both the ISO standard and SQALE and our experience with both as

obtained in this project.

J.H. Hegeman – Master Thesis – Unrestricted version 67

Figure 29 ISO 9126 – SQALE characteristic equivalence relations.

6.2. Setting up the Proof of Concept

We configured the Proof of Concept and identified a number of issues that was encountered and the

solution to them. This basically concern a number of rules that can only work under conditions that

were not met in the provided context. Also, we make some first remarks on experiences with SQALE.

Although a number of shortcomings is identified, in general SQALE works for its purpose. The setup

results in a working SQALE environment that can be used to assess Java and C# projects, which has

successfully been performed for the sample projects.

6.2.1. Initial Sonar Setup attempt

In an early stage of this research, an attempt was made to setup the Proof of Concept for the Sonar

tool, as defined in the research design. The reason to perform this attempt is that the implications of

the non-native support for .Net in sonar could not be clearly seen by a pure theoretical approach, as

indicated in background section 2.6.2.2. Full technical documentation of the steps taken in the

attempt can be found in appendix F. A graphical overview of the technical setup used for the Proof of

Concept can be found in appendix H. This setup constitutes for an important part the method that is

the goal of this research from the Info Support perspective.

For this purpose, we used a clean installation of Microsoft Windows XP SP3, with all updates applied,

on a Virtual PC (Info Support unattended install as of March 7, 2011). Although the general setup of

J.H. Hegeman – Master Thesis – Unrestricted version 68

Sonar (including Sonar, a JDK, a MySQL database and Maven and connecting them together) went

quite well, a number of issues were encountered while attempting to realize .Net support:

• A substantial number of plugins and utilities is required in order for .Net support to be

enabled. An overview can be found in the installation notes in appendix G.

• In some cases, dependencies caused version-issues. Some versions of plugins may have

compatibility issues with other versions of plugins. The plugin website states a recommended

combinations of versions.

• Although the SQALE quality model plugin and .net plugin cooperate, no default quality model

parameter set is available. This configuration needs to be done manually. To obtain

measurements results that are similar for java and .net projects, the java quality model

parameters used need to be imitated as closely as possible in the .Net parameter set.

Although it is possible to create a working setup in which Sonar can evaluate .Net products at this

point in time, a risk is involved in using a complex structure of dependencies. For example, a

dependency may seize to be developed, supported or available or may not be developed fast enough

to allow for the newest .Net techniques to be used. Therefore, .Net support in Sonar is, at this point

in time, not considered to provide an optimal solution for a business context. However, as the

investigation has shown, there are no alternatives at this time given the constraints. We will

therefore use Sonar with .Net support in our proof of concept, and elaborate on the applicability in a

production environment based upon our experience.

J.H. Hegeman – Master Thesis – Unrestricted version 69

6.2.2. Sonar SQALE Quality Model Settings

Although the SQALE quality model plugin and the .NET plugin for sonar cooperate without problems,

there is no default mapping between C# source code metrics and SQALE characteristics. An

investigation of this issue led to the conclusion that it is not possible to fully imitate the Java mapping

for C#, due to the fact the Sonar internally uses different tools to perform source code

measurements for both languages. Table 17 provides an overview of metric tools used by Sonar. The

Java tools are a standard component of the default Sonar installation. The C# tools are dependencies

of the Sonar .NET plugin. An exception is the SQALE plugin, which is optional for both Java and C#.

For Java, Sonar has added eleven rules to the ones found in the tools. The values behind tool names

in the table indicate the number of metrics provided by that tool.

Java tools (745 rules) C# tools (604 rules)

Checkstyle (122) FxCop (240)

Findbugs (384) Gendarme (216)

PMD (224) Stylecop (144)

SQALE plugin rule set (4) SQALE plugin rule set (4)

Sonar (native rule set) (11)
Table 17 Metric tools used by Sonar

To be able to use a quality model that consistently assesses both Java and c# projects, we have the

following two basic options to choose from:

• Start from scratch. This means that for each of the existing metrics for both languages, we

decide 1) if it is relevant and 2) should and does it have an equivalent in the other language.

If the answer to both questions is ‘yes’, for both languages the metrics can be assigned to a

selected quality model sub characteristic. Drawbacks of this approach are the non-trivial

nature of the metric comparison; their names and descriptions do not allow for 1-to-1

mapping and equivalence for languages is not easily established. Also, the large number of

available metrics makes this a very labor-intensive approach.

• Use an existing configuration as a basis and adapt it if needed. In this case, we ‘just analyze’

projects using an existing configuration. We can assume the validation data to be true, and

adapt to model to see if we can make it produce output for which the correlation

expectations from section 3.5 can be verified to be met. Main drawback is this approach is

that the existing configuration may significantly differ from what we actually want, which

causes the amount of effort needed to make modifications (‘calibration cost’) to become

high. Also, we were able only to obtain one existing configuration that incorporates both Java

and C# metrics. It was obtained from the author of the .Net plugin for Sonar.

The estimated efficiency of the second approach is thought to be highest. The configuration aims,

according to the authors, at making comparable assessments of java and c# projects, which is what

we need. We were able to install the obtained configuration without significant difficulties.

6.2.3. .Net Project Setup

The process of making .Net projects suitable for analysis by Sonar requires some extra steps to be

taken. .Net project may consist of a number of Visual Studio Solutions and for each Visual Studio

Solution, a definition file (.sln) exists. The Info Support projects used in the Proof of Concept consist,

on average, of about 8 solutions (estimate). Sonar cannot aggregate quality measurements of

projects spread over multiple solution definitions. Fortunately, a tool was found that can be used to

J.H. Hegeman – Master Thesis – Unrestricted version 70

merge solution definitions into one definition file before starting Sonar analysis. This tool was found

at Google Code and is used in the Proof of Concept. The tool is also part of the method begin

developed in this research. See the Digital Resources section in appendix C for more information.

During the use of this tool, no issues were encountered that were reason to believe that it did not

operate as it should. It has been verified that the merging process includes all components of multi-

solution .Net projects, which is its main purpose. Also, source code of the tool is available, so that

further functionality verification, or modification, is possible.

6.2.4. Initial Quality Model Configuration Calibration & Setup Test

6.2.4.1 Basic Configuration

Initially, all rules have been enabled. A full list of available rules is provided as a digital resource, see

appendix C. Some of them, however, caused problems when attempting to run the analyses. These

rules have been disabled. Additionally, some rules have been disabled or modified because they had

an impact of analysis results that was out of proportion to the actual problem (i.e. an increase of

remediation cost in orders of magnitude) or had duplicates. These are considered ‘trivial

configuration enhancements’. All changes to the initial configuration are listed in Table 18.

Rule name Reason for disabling/modifying

Avoid too complex class

(Java)

Cause NullPointerExceptions, replaced by Cyclomatic Complexity

Rule. Known bug, registered under number SONAR-2301 created

March 25, 2011.

Avoid too complex method

(Java)

Avoid too deep inheritance

tree (Java)

Causes NullPointerException, no direct replacement identified.

Reported to Sonar developers.

Header (Java)
These rules can be used to match specific (regular) expressions in

headers or bodies of files. They need to be configured before they

can be used. A violation can be defined for cases in which a file does

or does not contain the header or regular expression. We have no

use for these rules at this moment.

Regexp (Java)

Regexp Header (Java)

Regexp Multiline (Java)

Regexp Singleline (Java)

Regexp Singleline Java (Java)

XPath rule template (Java)
Not an actual rule but a template for custom rules, cannot just be

enabled.

AvoidCodeDuplicateInSame-

ClassRule (C#)

Too rigid to be workable; single-line copies are already a violation.

Also: insufficient memory to perform analyses and no Java

alternative. Replaced by a.o. a SQALE rules that works both for Java

and C# (‘Duplicated Blocks’ rule).

AvoidCodeDuplicateInSibling-

ClassesRule (C#)

Tabs must not be used (C#)

Constitutes a disproportional share of remediation costs (over 1/3),

while Tabs are no problem at Info Support. Also, there is no Java

equivalent.

DesignForExtension (Java)

This is a very interesting rule that requires nonprivate nonstatic

methods of nonfinal classes (practically most methods) to be either

abstract, final, or have an empty implementation. Documentation

states that this API design style protects superclasses against being

broken by subclasses. The downside is that subclasses are limited in

their flexibility, in particular they cannot prevent execution of code in

the superclass, but that also means that subclasses cannot corrupt

the state of the superclass by forgetting to call the super method.

Whether or not this is a ‘good’ rule could be a paper subject itself. At

J.H. Hegeman – Master Thesis – Unrestricted version 71

Info Support, this programming rule is not applied. Violations

constitute a large part of remediation costs (upto about 1/3) only for

Java projects. We choose here to disable this rule.

Strict Duplicate Code (Java)
This rule has a duplicate, namely the Duplicated Blocks rule from the

SQALE plugin.

Dataflow Anomaly Analysis

(Java)

Has too much impact on the quality readings due to too many

violations of type ‘a recently defined variable is redefined’.

Documentation states that this does not have to be a bug. This rule

is not applied at Info Support.

Method Argument Could be

Final (Java)

This rule covers a subset of ‘Final Parameter’ and is therefore a

duplicate.

Local Variable could be final

(Java)

This rule covers a subset of ‘Final Parameter’ and is therefore a

duplicate. Is also a copy of ‘final local variable’

Final local variable (Java)
This rule covers a subset of ‘Final Parameter’ and is therefore a

duplicate. Is also a copy of ‘local variable could be final’

Final Parameter (Java)
This rule has a major impact on the remediation costs; it is

apparently not an Info Support quality policy.

Prefix local calls with ‘this’

(C#)
No java equivalent available, major remediation cost impact.

Identifiers should be spelled

correctly (C#)

Some of the sample projects use Dutch names for classes, methods

and variables while this rule only recognizes English names. It is

possible to add a Dutch dictionary, but no dictionary could be found.

Also, no Java equivalent was identified. We therefore chose to

disable this rule.

Identifiers should be cased

correctly (C#)

Causes a violation for each occurrence for each incorrectly cased

variable. Due to source code refactoring possibilities this yield

unrealistic remediation costs. The remediation costs per violation for

this rule have been changed from 0.01 days to 0.001 days.

Hidden field (Java)

This rule checks that a local variable or a parameter does not

shadow a field that is defined in the same class. This rule has not

been removed, but a parameter has been set to disable if for setters

and constructor parameters, because method shadowing is done by

default in these situations in Info Support java projects.

Elements must be

documented (C#) / Javadoc

(java)

Remediation costs changed from 0.03 days to 0.01 days. The amount

of time needed to document a local variable, the most common

violation, is far less than 14 minutes. The original remediation cost

had too much impact on measurements.

Curly Brackets must not be

omitted (C#)
No policy and no Java equivalent.

Unit Test Coverage (both Java

and C#)

Some sample projects use a very deprecated NUnit test frame work

not supported by Sonar. To get consistent measurements, we

choose to disable the coverage rule.
Table 18 Modified rule list

Disabling the Unit Test Coverage rule was needed due to the face that some (n=2) of the .Net project

use a (very) deprecated NUnit framework which is not supported by Sonar. For consistency reasons,

we chose to disable to rule for all measurements. It should be noted, however, that if measured for

other projects coverage percentage was found not to present a problem. Info Support already

monitors coverage and has strict regulations concerning minimum coverage. This is reason to believe

that disabling the rule does not impact research results.

J.H. Hegeman – Master Thesis – Unrestricted version 72

6.2.4.2 Model Calibration

To calibrate the model, we follow the steps as indicated in research design paragraph 3.5.4. The

number of rules attached to each characteristic for both Java and C# are listed in Table 19.

Characteristic Java C# (total)

Maintainability 205 251 456

Changeability 36 13 49

Reliability 332 170 502

Testability 13 9 22

(total) 586 443 1029
Table 19 Rules per language per selected characteristic

This configuration is reflected in the Sonar interface, as can be seen in the screenshot displayed in

Figure 30. Note that the interface shows all rules that have been attached to a quality characteristic.

A number of them, in particular rules that have been listed as disabled according to Table 18, are not

used in the quality calculations. Formally, this can be put as follows:

1. The set of enabled rules is a subset of the total set of available rules

2. The set of rules that are attached to a SQALE characteristic (‘attached rules’) if a subset of

the total set of available rules

3. The intersection of the set of enabled rules and attached rules is the set of rules that is used

in quality assessment (‘used rules’).

The conforming Venn diagram is displayed in Figure 31. Additionally, Figure 30 displays the hierarchy

of attached rules in the current configuration.

Figure 30 Sonar SQALE configuration screenshot

A full overview of the configuration can be found in appendix I. This appendix displays the full tree

structure in in the configuration state described.

6.2.4.3 SQALE indexes

Using the described setup, we performed an initial analysis of the sample project. This resulted in the

SQALE indexes (remediation cost per characteristic and in total divided by total development cost,

see 2.4.6) as displayed in Table 20.

Figure 31 Venn diagram of Sonar Rules

J.H. Hegeman – Master Thesis – Unrestricted version 73

Project Analyzability Changeability Reliability Testability Total

A 0.07 0.01 0.05 0.03 0.16

B 0.07 0.00 0.12 0.00 0.19

C 0.09 0.02 0.06 0.05 0.23

D 0.03 0.00 0.03 0.01 0.07

E 0.05 0.01 0.04 0.04 0.13

F 0.07 0.00 0.02 0.01 0.10

G 0.08 0.07 0.03 0.02 0.20

H 0.05 0.01 0.02 0.02 0.10

I 0.03 0.04 0.01 0.01 0.09
Table 20 Initial Sonar measurements

6.2.4.4 SQALE experiences

Using this configuration and a customized Sonar Dashboard of which an example can be found in

appendix D, initial analysis attempts have been conducted. Based upon the results of these attempts,

the following experiences and shortcoming of the SQALE model were identified.

• As can be read in the quality model description (2.4.6), SQALE ratings are calculated by

dividing the remediation cost by the total development cost. The result of these divisions

(‘indices’) are mapped to a discrete 5-point scale (‘ratings’) that defines the final judgment.

The number of rules per characteristic varies. A logical consequence is that the remediation

costs for a characteristic with many rules will usually be higher than the remediation cost for

a characteristic with not many rules. Because only one mapping is used, this results in higher

ratings for characteristics with a lower rule count. For the initial analysis results, in seemed

impossible to define a mapping that yields ‘nice’ scores for all characteristics, nice meaning

that for no characteristics most of the projects score either 1 or 5. We overcome this issue by

using the ‘ raw’ value for remediation cost divided by total cost in the analysis, not applying

this mapping.

• The overall rating is defined by the addition of the remediation costs of all enabled

characteristics, divided by the total development cost. The resulting index is mapped to a

rating using the same mapping as is used for individual characteristic. The consequence of

this is that the overall quality rating, on a 1-5 scale, is always equal to, or worse than, the

worst quality characteristic rating. For example, a project with a rating of ‘2’ on all

characteristic, may have an overall rating of ‘4’. This may not be what one would probably

expect. A possible solution is to just ignore the overall rating, and only look at the

characteristic-specific ratings instead. An average of the ratings instead of a summation could

be used as a replacement for the overall characteristic.

• Although Sonar associates a severeness property with each rule, severeness of violations is

not taken into account when calculating SQALE ratings. This conforms to the SQALE

definition, but can be considered a lack of information. This issue is addressed in a proposal

for an extension of SQALE, see paragraph 7.5.2.2.

J.H. Hegeman – Master Thesis – Unrestricted version 74

7. Analysis & Optimization
This chapter provides a more in-depth analysis of the results obtained, conforming to research design

section 3.5. The analysis shows that SQALE measurements, as obtained in chapter 6, correlate with

validation data – expert opinions and financial quality indicators – to an acceptable extend. The

correlation can be enhanced by optimizing the SQALE configuration to match Info Support

development policies. Major side nodes concern the difficulty of determining what is a ‘good’

configuration. We also state that a higher correlation value does not necessarily imply a higher

quality of the quality model configuration. We elaborate upon these summarized findings in the

following sections.

7.1. Validating the Validation data

Before presenting an analysis of the correlation of

SQALE measurements with validation data, it should be

noted that the survey results and financial quality

indicators together have no significant correlation. This

finding is illustrated in Figure 32.

This correlation can easily be calculated from the overall

quality ratings of the sample projects as provided by

experts (section 4.2) and the financial indicators (chapter 5). Correlating the data in Table 13 on page

62 and Table 15 on page 63 provides the following information:

 Pearson value

Survey results vs. financial quality -0.03
Tabel 21 Validation data correlation

The value for this correlation, -0,03, is to be interpreted as ‘insignificant’ in accordance with research

design paragraph 3.5.1. From this, we must draw the following conclusion:

- At least one of the two sets of validation data (expert opinions or financial indicators) is

apparently unreliable, and cannot be used to assure the validity of quality assessment by Sonar

SQALE.

- Due to the different nature of the sets of validation data and the problems that arose when

obtaining the data needed to calculate financial indicators, as indicated in chapter 5, it seems

reasonable to assume that the financial indicator values are the ones being unreliable. If we

assumed those were reliable, it would follow that the expert opinions are unreliable, which is

considered less likely.

In the remainder of the statistical analyses, we will calculate correlations of SQALE measurements

with both expert opinions and financial indicators, but we will keep in mind that the financial

indicator values are to be considered unreliable.

Note that intuitively, one may expect that given datasets A, B and C, a positive correlation between A

and B and a positive correlation between B and C together imply a positive correlation between A

and C, that is, that correlation is transitive. This is, however, a common misconception (Sotos 2007).

Figure 32 Validation data correlation

J.H. Hegeman – Master Thesis – Unrestricted version 75

7.2. Initial Validation Results

7.2.1. Calculating Correlations

Using the Proof of Concept setup from chapter 6.2 and the validation data from chapters 4 and 5, an

initial attempt to establish correlations has been performed. The results of this attempt are

described in Table 22. This table has the following columns:

- Correlation: the name of the correlation we calculated. This takes the form ‘A vs B’, meaning that

the correlation of A and B is calculated. Correlations 1, 6 and 7 concern the total data sets of

Sonar (SQALE) results, survey results and financial results, while correlations 2 through 5 ‘zoom

in’ on specific quality characteristics and indicate the correlations between Sonar results and

survey results for those individual characteristics.

- Value: the Pearson correlation coefficient values

- Expected: the expected correlation value ranges as defined in research design section 3.5.1.

- Conclusion/remarks: remarks about the findings, which will be elaborated upon later.

Table 22 Initial correlation values

A visualization of the correlations is displayed in Figure 33 using scatter plots. The following legend

applies to this figure:

• EQI = Expert Quality Indicator (Survey results). The scale indicates the sum of remediation

cost of the four quality characteristics (horizontal axes in all charts except top-center)

• FQI = Financial Quality Indicator (Financial investigation results). The scale indicates the

amount of hours spent per KLOC (horizontal axis in top-center diagram, vertical axis in top-

right diagram)

• TQI1 – Tool Quality Indicator 1 (Sonar results with initial configuration). The scale indicates

the remediation cost divided by total cost (vertical axis in all charts except top-right).

The upper diagrams show the global correlations between the three data sets. The lower four

diagram show the correlations between survey results and Sonar measurements for each

characteristic

J.H. Hegeman – Master Thesis – Unrestricted version 76

Figure 33 Initial Correlation Scatterplots

From this table and figure, the following initial observations can be made:

- The expectation that there is a ‘medium’ correlation between expert opinions and Sonar

assessment results is true.

o The result vary per characteristic. The analyzability and reliability characteristics yield

acceptable correlation values.

o For Testability, there is no correlation. This issue is addressed to the low number of rules

assigned to this SQALE characteristic, which causes the occurrence of violations to

become somewhat coincidental. This issue can be addressed in attempts to optimize the

configuration.

o The Changeability character yields a negative correlation. This can presumably be

explained by the assumption that using the current configuration, Sonar is ‘very tough’

for Java projects, which are ranked high by expert. This is supported by the fact that the

correlation is very sensitive to the Java projects and increases from -0.28 to +0.25 by just

removing the Java projects from the data set. This issue can be addressed in attempts to

optimize the configuration.

- Despite the low quality of the financial data retrieved, the hypothesis that the correlation

between this data and Sonar results is at least 0.30 is still true.

Note that at least a +0.26 value is needed for a statistically significant positive correlation with p <

0.25, while at least a +0.47 value is needed for a statistically significant positive correlation with p <

0.10, in accordance with paragraph 3.5.2. This means that we can state that most correlations exist

with a certainty of over least 75%.

7.2.2. Sensitivity

In general, the diagrams show the correlations to be quite sensitive; the removal of only one project

can have a major impact on the correlation coefficient. To make the sensitivity measurable, we

recalculated all correlations 9 times and each time removed one of the nine projects from the sample

set, i.e. we tried all proper subsets with (n=8) as a sample data set. The results have been visualized

in a graph, which is displayed in Figure 34. The vertical axis indicates the Pearson value range, while

the horizontal axis displays all projects. A value on the horizontal axis indicates the subset of sample

projects in which that project is omitted, i.e. value ‘D’ indicates the set {A..I} \ {D}. The values in the

legend of the diagram are the correlation coefficients when using the total project set (n=9).

J.H. Hegeman – Master Thesis – Unrestricted version 77

The more horizontal a line is, the more stable it is. Peaks in the graph (either negative or positive) are

caused by projects that have a high impact on the correlation value. These are usually projects that

lie far away from the trend lines in the scatter plots (Figure 33). For example, the ‘Reliability’ line

(orange) is heavily impacted by the project B (in a positive way) and Project F (in a negative way).

Removal of these lead to a negative and positive peak in the graph, respectively.

Note that the relationship between projects and impacted correlations appears to be quite random;

there is no single project that has a major impact on many correlations in the same direction.

The average variance for all correlations is 0,026. After calibration of the model has been completed,

we expect to see less sensitive relations.

Figure 34 Sensitivity of initial findings

7.2.3. Correlations of Characteristics

As a last step of the initial analysis, we calculated the correlation between the scores given by Sonar

for different characteristics, just as we did with the expert survey results (see 4.1). This yields the

information displayed in Table 23.

Characteristic 1 Characteristic 2 Pearson correlation Interpretation

Analyzability Changeability 0,11 Positive, low

Analyzability Reliability 0,45 Positive, high

Analyzability Testability 0,57 Positive, high

Changeability Reliability -0.33 Negative, medium

Changeability Testability 0,00 Insignificant

Reliability Testability 0,02 Insignificant

(average) 0,14

Table 23 Characteristic correlations for initial Sonar run

J.H. Hegeman – Master Thesis – Unrestricted version 78

We see that the correlations vary a lot, which is another sign of unbalance in the model

configuration. The average correlation is positive, but low. We expect to see higher correlations

between scores for individual characteristics, like the ones we have found in the expert opinions (see

4.1). We will reflect on this issue in the reflection section (7.4).

7.3. Calibrating the configuration: applying Info Support rule set

We were able to optimize the quality configuration by applying Info Support programming policies.

This attempt led to an increase of correlation values and stability. This section describes the process

and results.

7.3.1. Reconfiguring the rule set

As a next step in the calibration process, we chose to limit the set of rules used in the SQALE

configuration by applying only those rules that are used at Info Support. In the Endeavour

environment, Info Support uses CheckStyle (Java), FindBugs (Java) and FxCop (C#) rules.

Conveniently, this is a proper subset of tools internally used by Sonar.

For CheckStyle and FindBugs, configuration files were obtained from Info Support. For FxCop,

information was obtained indicating that all rules should be enabled. The only exception are spelling

rules that only support the English language. All rules of ‘rule engines’ other than CheckStyle,

FindBugs and Fxcop were disabled.

This lead to the SQALE configuration as displayed in Table 24. The rule-characteristic mapping is still

configured as it was in the initial validation attempt, since Info Support does not have any mapping

information available. Clearly, this is not a balanced configuration. The distribution of rules over

characteristics, as well as the balance between languages, is not likely to result in a balanced

judgments of all quality aspects of assessed projects.

Characteristic Java C# (total)

Maintainability 73 60 133

Changeability 7 3 10

Reliability 125 69 194

Testability 3 1 4

(total) 208 133 341
Table 24 SQALE configuration using Info Support ruleset

7.3.2. Reconfiguring the rule – characteristic mapping

To overcome the issue of lack of balance between characteristics, we attempted to redistribute the

rules before performing analysis. An issue that arose in this attempt, was that the natural distribution

of rules of characteristics is inherently unbalanced, the natural distribution being defined as a logical

choice for a characteristic for each rule, as assessed by the author of this work. So, for one

characteristic there exists many more logically associated rules than for another. This has the

following consequences:

• A redistribution of rules over characteristics that results in a balanced configuration will have

a less logical mapping than the initial configuration. This blurs the distinction between

J.H. Hegeman – Master Thesis – Unrestricted version 79

characteristics and reduces the quality of the provided ratings themselves, which is an

unwanted effect.

• Balance could be accomplished by removing rules from characteristics that have relatively

many of them, but this would imply removing potentially relevant rules from the set of used

rules which has a negative impact on the quality of quality readings as well.

We were, however, able to balance the model to a limited extend using the second method

described in 3.5.4.2; i.e. by re-evaluating the ‘overflowing’ characteristics and deciding whether

characteristics should be moved down the hierarchy or not. In general, we discovered the following:

• Rules assigned to the sub characteristic ‘Reliability: Exception Handling’ could be reassigned

to the Testability characteristic. This is due to the fact that bad exception handling influences

testability; if exceptions aren’t handled in the correct way, errors can remain undetected and

a software project is assumed to be lest testable.

• Rules assigned to the sub characteristic ‘Maintainability: Understandability’ could be

reassigned to the Changeability characteristic. This is due to the fact that a lack of

understandability inherently has a negative impact on changeability: if a developers doesn’t

understand source code, he/she will have a hard time changing it to fix bugs or building new

features.

The result of this change is displayed in Table 26.

Characteristic Java C# (total)

Maintainability 27 7 34

Changeability 53 56 109

Reliability 120 61 181

Testability 8 9 17

(total) 208 133 341
Table 25 SQALE configuration with Info Support ruleset - after balancing

The following table and graphs again show the correlations, correlation scatter plots and sensitivity

for the new configuration. The table and graphs are to be interpreted like the previous ones

described in 7.2.

Table 26 Correlations after calibration

J.H. Hegeman – Master Thesis – Unrestricted version 80

Figure 35 Correlation scatterplot after calibration

Figure 36 Correlation sensitivity after calibration

A few remarks on these figures:

• Although the correlation values are higher, the scatter plots still show a spread for individual

characteristics that is very large and also much larger than the spread for the aggregated

survey-tool result correlation. This implies that either the distribution of rules over

characteristics is still not optimal, or that we are unable to correlate on this level of

abstraction due to a difference in perception of what the characteristics mean.

J.H. Hegeman – Master Thesis – Unrestricted version 81

• The correlation for ‘reliability’ decreased under the modifications made since the initial

validation attempt. Since the associated set of rules is a subset of the original set, we may

conclude that too many rules have been left out or were transferred to the ‘testability’

characteristic.

• In the sensitivity diagram, the average variance for all correlations is 0.020 (was 0.026), a

decrease of 23%.

• We see that most correlations depend heavily on project I in the sample set. Removing this

entry is the only action that causes significant negative correlations to show up.

7.4. Reflection

Now that we have performed a number of attempts to correlate Sonar measurements to validation

data and to increase the value and quality of these correlations, it is time for some reflection on

results so far.

7.4.1. What is an optimal configuration?

So far, we validated attempts to optimize the configuration by verifying that these optimizations

increased the correlation with validation data. Due to the flexibility of the quality model, however, it

should be possible to reach a correlation approaching +1.0. This can, for example, be accomplished

by following the following steps:

o For each project, identify a rule that causes violations in only that project.

o Disable all rules but the 9 identified in the previous steps

o For each of the identified rules, set remediation costs so that the total remediation

costs for the project will have a value that corresponds to expert opinion.

The resulting configuration will probably not be usable in any practical context, since it uses a rather

random rule set. Also, considering the inherent subjectiveness and suboptimal reliability of the

validation data, there exists a certain practical maximum correlation. This leads to the following

statement: for already significant correlation values, an even higher correlation of Sonar

measurement results with validation data does not necessarily imply a better configuration. In the

context of this statement, ‘better’ is defined as ‘more suited to the needs of the user’, in this case

Info Support. So, we may be able to achieve correlations of values approach +1.0 as long as we

accept making changes to the quality model configuration purely for the purpose of increasing this

correlation, but this is of no use, since it does not increase the quality of the quality model

configuration.

We redefine the concept of an optimal configuration as follows:

An optimal SQALE configuration is a configuration that:

1. Uses an available rule if and only if it is deemed relevant in the context;

2. Has each of its enabled rules mapped to the characteristic that is a logical choice considering

the SQALE specification;

3. Has, for each enabled rule, a remediation cost setting based on an estimate.

4. Is continuously evaluated and adapted if reasons arise to do so.

J.H. Hegeman – Master Thesis – Unrestricted version 82

This definition contains subjective elements, since no absolute optimum exists. This implies that in

the context in which the method will operate, an authority and decision-making procedure are

needed to fill in the subjective elements of the definition. This could, for example, be one expert, or a

set of people who attempt to reach consensus on items of discussion, i.e. as proposed in 3.5.4.1. If

this authority exists, a configuration can be verified to meet the mentioned requirements. For

completeness, we could formulate this as an additional requirement:

5. Is supported by an authority that makes choices were needed.

7.4.2. Why do correlations on characteristic-level remain low?

Although the overall correlation of survey results with Sonar measurement is good, the correlations

for individual characteristics remain quite low and unstable. This is strange, because the overall

readings are, both in the case of the survey and Sonar, composed of the four scores on individual

characteristics.

It has been argued that the Sonar configuration is not optimally balanced, but attempts to enhance

this balance result in the conclusion that this can only be accomplished ‘by force’, i.e. by making

illogical choices in the rule – character mapping. Simply put, we are unable to optimize the balancing.

But maybe ‘optimizing’ is not a correct term. The fact that the correlation of scores on individual

characteristics are higher in the survey than in sonar results implies some kind of discrepancy in

interpretation of the meaning of characteristics, as indicated in Section 4.1

This would mean that both the survey results and Sonar results are an immutable fact and the lack of

high correlation values on this level of abstraction is caused by interpretation differences. This

conclusion would be consistent with observations, and also implies that it is of no use to attempt to

increase correlations at this level any further

7.4.3. On the Suitability of Sonar

During the phase in which we investigated tools and quality models to use, we had some doubts

about applying Sonar in a business context (see 6.2.1). After using Sonar, in combination with a

number of required plugins, we can report on our experience with it.

We did not encounter any problems that cause us to believe the setup is unsuitable for use in a

business context. While practical problems can arise when using the setup, these have found not to

be unresolvable. This helpful error reporting functionality of Sonar aided us in solving practical issues

using the assessments. This observation confirms the presumed practical suitability of the setup.

7.5. SQALE Extension Proposals

In this course of this research, a number of opportunities of improvement of the SQALE model has

been identified. These concern the balancing of SQALE ratings to overcome the issue of having to use

one index-rating mapping for all characteristics and the lack of the concept of ‘severeness’. (see

6.2.4.4) This paragraph elaborates upon these improvement opportunities and proposes model

extensions for them.

J.H. Hegeman – Master Thesis – Unrestricted version 83

7.5.1. Balancing the Ratings

In the Proof of Concept of this research, we identified the need for a balanced quality model

configuration, in the sense that the number of rules assigned to each SQALE characteristic should

roughly be comparable for all characteristics and for all languages. This is due to the fact that only

one mapping of remediation costs to SQALE ratings is available for the full model. The requirement of

balance can be considered a shortcoming of the SQALE model itself. We therefore propose a small

extension to the model, that compensates for the lack of balance when calculating quality ratings.

Using this extension, it is possible to use SQALE with a less balanced configurations, as we will show.

Consider the data in Table 27. In the second and third columns, labeled ‘Java’ and ‘C’, it shows an

unbalanced configuration of four characteristics listed in the first column, labeled ‘Char’. The

configuration is similar to the initial configuration used in the Proof of Concept of this research.

Columns 5-8 show two balancing factors, which are defined as follows:

- Interlanguage-balancing is done by calculating a scaling factor for the remediation costs, which is

the total number of rules over all languages for one characteristic divided by the number of rules

assigned to that characteristic for a specific language, to the power of 0.5 (square root). For

example, the Java Analizability Interlanguage balancing factor is √(456/205)=1.49

- Intercharacteristic-balancing is done by calculating a scaling factor for the remediation costs,

which is the total number of rules for a specific language divided by the number of rules of that

language belonging to a specific characteristic. For example, the Java Analyzability balancing

factor is √(586/205)=1.69

- The overall factor is calculated by multiplying the two established factors. For example, in the

case of Java Analyzability, the factor is 1.49 * 1.69 = 2.52. For each language, a factor is

calculated for each characteristics. These factors are used as a multiplier for the remediation

costs per language per characteristic.

 No. Of Rules Interlang Interchar Result

Char. Java C# Totals Java C# Java C# Java C#

Analysability 205 251 456 1,49 1,35 1,69 1,33 2,52 1,79

Changeability 36 13 49 1,17 1,94 4,03 5,84 4,71 11,33

Reliability 332 170 502 1,23 1,72 1,33 1,61 1,63 2,77

Testability 13 9 22 1,30 1,56 6,71 7,02 8,73 10,97

Totals 586 443

 Table 27 SQALE Extension Proposal Example

This way, we create an ‘inverse weighing factor’ for each characteristic-language combination. The

reason to include the square root component in the formula, is the following assumption:

• The average relevance of rules assigned to a characteristic decreases when more rules are

added to that characteristic.

The rationale for this assumption is that if one bases a quality judgment on just a few rules, these will

presumably be well-selected, while for a large set of rules it is not much of a problem if some rules

are not very relevant. This implies the need to introduce an exponent in the 0-1 range. Since we have

no further information to narrow this down, we select the power of ½.

J.H. Hegeman – Master Thesis – Unrestricted version 84

Table 28 Comparison of Quality Assessment with and without SQALE model extension

The effect of applying this extension, is that it becomes far more likely that one mapping of

remediation costs to SQALE ratings is sufficient to establish readable results for all characteristics as

well as the overall quality. The result is demonstrated in Table 28. These results are based upon the

actual initial SQALE configuration used during the Proof of Concept. Each row represents a project

and each cell contains a SQALE rating for that project, on a specific characteristic. For both the

‘extension enabled’ and ‘extension disabled’ situation, the mapping has been optimized to get a fair

spread of ratings. Of course, since the extension causes remediation costs to be multiplied by a

specific factor per characteristic and per language, the boundaries between A-E ratings on the scale

have higher values with the model extension enabled.

As can be seen, the distribution of values in the 1-5 range is bad (variance < 0.5) in two of the five

columns of the right overview, which is not the case in the left overview (lowest variance = 1.0 for

analyzability). The average variance per column is 2.06 in the left section and 1.41 in the right

section, which is an increase of 46%, realized by enabling the model extension.

Note that in this example, no scaling is applied to the ‘total’ score. This causes the overall ratings to

no longer be at least as high is the highest characteristic rating.

Unfortunately, this model extension cannot easily be integrated in the solution for Info Support,

since it requires a modification of the tool used, of which the SQALE component is not open source.

We therefore consider this to be a small contribution to the field of research instead of a component

of the method to be developed.

J.H. Hegeman – Master Thesis – Unrestricted version 85

7.5.2. Adding Weights to Rule Violations

Due to the use of the remediation cost paradigm, SQALE allows the user to set remediation costs per

violation or per file in which one or more violations occurs. The number of violations or the

remediation costs, however, do not say anything about the severity of the violations, that is the

potential importance of repairing violations. For example, it may be the case that some rule that has

a large number of violations and very high remediation

costs, is actually not really important. This could, for

example, be the case for rules that concern what could

be considered cosmetic source code details such as

variable name spelling policies, the use of curly braces

for single-line if statements or the amount of

whitespace between methods. This paragraph

discusses a number of approaches to the lack of

violation severity.

7.5.2.1 Approaches within the

current model

Approach 1: explicitly define severity classes as sub

characteristics. Since the model allows the user to

freely define sub characteristics, it is possible to define

these per severity. For example, the ‘Reliability’

characteristic could have sub characteristics for

severity classes like ‘Info’, ‘Minor’, ‘Major’, ‘Critical and

‘Blocker. The same sub characteristics could be

defined for the other characteristics as well. Each rule

would be associated to one of the severity sub

characteristics of an appropriate characteristic. Figure

37 shows the first and second level of the SQALE

hierarchy when using this approach and the

characteristics relevant for this research.

Advantages:

- Can be implemented within the boundaries of the existing model definition;

- Supported by the Sonar tool SQALE plugin;

- Relatively easy to implement, although it will cost some time to reconfigure the model;

- Provides easy insight in severity of violations through the SQALE sunburst diagram (see App. D).

Disadvantages:

- Since the number of levels of hierarchy in SQALE is fixed, one of the hierarchy levels, namely the

sub characteristics level, can no longer be used for its original purpose (an abstraction level in

between characteristics and rules);

- Although the SQALE definition allows this approach to be implemented, it could be considered as

a form of abuse of the intended abstraction hierarchy;

- This approach does not provide a way to take violation severity into account when calculating

quality indices and ratings.

Figure 37 Rule severity approach example

J.H. Hegeman – Master Thesis – Unrestricted version 86

Approach 2: use remediation costs as weights. This is a very obvious possibility which has the same

advantages as approach 1. It is, however, an explicit violation of the intentions of the SQALE model,

since is does not in any way conform to the remediation cost paradigm. When using this approach,

SQALE indices would indicate the ‘sum of severities of rule violations per characteristic’. This could be

considered an indication of quality, but does not say anything about the amount of repair effort

required. SQALE ratings would become rather useless, since the total development effort is no longer

a relevant measurement. This approach highly disadvised.

7.5.2.2 Model Extension for Rule Severity

Approach 3: use an extension of the model. Although not directly implementable in a practical

context using existing tools, we propose an extension to the SQALE model to integrate severity

properties of rules. The extension has the following properties:

• The basis is the existing SQALE model as defined in (Sqale 2011).

• Each rule gets an additional property, named ‘severity’. This property can have one of the

following values: info, minor, major, critical, blocker. It is mandatory to set a value for each

rule in the model configuration.

• When executing the model, a new, additional result is provided to the user. This result shows

the user not only how much time is needed to repair source code shortcomings, but also

shows the sequence in which issues should be addressed. This sequence is calculated based

on a priority scheme. In this priority schema, issues are sorted by severity; issues with a

higher severity come first. Within one severity group, issues are sorted by remediation costs;

items with the lowest remediation costs come first. The result can be displayed in the form

of a list. It is also possible to use other priority schemes, such as ‘Shortest Job First’. Possible

schemes are comparable to those used in process scheduling in operating systems

(Silberschatz 2009).

• Next to the SQALE kiviat that shows the SQALE rating per characteristic, a second kiviat is

defined that shows the severeness of issues per characteristic. For each severeness category,

a weight is set. The default settings are displayed in Table 29. We choose a logarithmic scale,

since we assume that a violation in one category is usually considered ‘x times as severe’ as a

violation in a lower category. The weights, however, should be changeable by the user,

because users may have a different interpretation of the relative severity of different

categories.

Name Weight

Info 1

Minor 5

Major 25

Critical 125

Blocker 625
Table 29 Default severity weights for SQALE extension

• The ‘Extended SQALE severeness index’ for a characteristic is the weighted sum violations

associated with that characteristic. The results can be displayed in a Kiviat, along with the

original remediation cost kiviat. Consider the example displayed in Figure 38. The original

SQALE kiviat (left) and issue severity kiviat (right) should be interpreted together. For

example, ‘Changeability’ (top) has high remediation cost but a low severeness, while

Analyzability (left, indicated ‘maintainability’ in the screenshot) has lower remediation cost

J.H. Hegeman – Master Thesis – Unrestricted version 87

but a higher severity. This information combined, it seems logical to address the analyzability

issues before the changeability issues. This insight could not have been obtained using the

original SQALE model.

Figure 38 SQALE severity kiviat extension example

The diagrams in Figure 38 could be merged into one diagram, by applying a formula that divides the

values for severeness and remediation cost. This indicates the ‘amount of reduced problem

severeness per unit of time’ when working on the artifact. This is no longer a direct indication of

quality, but an work scheduling tool. If this is implemented in a fashion that allows the user to ‘zoom

in’, the direct rule violations to start working on can be identified.

Advantages:

- This approach provides useful information not available in the original SQALE model;

- This approach can be used in the process of deciding which issues to address first.

- The extension addresses an import shortcoming of the current model while respecting the

current model.

Disadvantages:

- Increases the conceptual difficulty of the model and the time needed for configuration;

- Cannot be used in a practical context as long as no implementation is available.

J.H. Hegeman – Master Thesis – Unrestricted version 88

8. Recommendations for Info Support
During this research, a number of ideas about things that, in the opinion of the author of this work,

should be done or should not be done have come up. Based upon literature study, the acquisition of

knowledge about Info Support as a company and the results of this research, this chapter sums up

these recommendations.

8.1. Do not try this at home

In the initial research phase of this project, we have looked at various tools (section 2.6, page 35).

The amount of effort put into the development of these tools is significant. Also, successful business

models assure continuous improvement and friendly prices. Although Info Support has been

developing some forms of source code assessment in-house, it is advised not to attempt to develop

an equivalent to tools such as Sonar as an internal project. Such project would require a large initial

investment as well as a structural investment of resources, while third-party tools such as the ones

used in this project can do the same job for a price that is expected to potentially be orders of

magnitude smaller. There is more certainty that for a fixed price per time period, the used tools

always stays up to date. Also, flexibility of the tools allows for some dynamic configuration, so that

specific Info Support requirements can usually still be incorporated when using third-party tools.

8.2. Keep an eye open for newer and better tools

In the tool identification phase of this research, it was found that many tools are still under

development and are continuously improved. Also, Sonar with .Net support could be called a

somewhat improvised solution, due to the non-native support for .Net (6.2.1, page 67). Promising

projects, such as Squoring (Squoring 2011) are currently running but do not yet provide solutions

that can be used in a business context. It appears that quality-model based source code assessment

is still in its childhood. Therefore, it is worthwhile to keep an open eye on the tool market, to seek

out opportunities to use the newest tools after they are released.

One might think this recommendation contradicts the first, because why would Info Support not

need to develop a tool itself while apparently no optimally-suited tools are available? The answer is

that it is expected that ‘more suitable’ tools become available much faster than Info Support can

develop something suitable internally. So, even though Info Support may not be fully satisfied with

the tools currently available, it is not possible to decrease the waiting for something better by

starting internal development.

8.3. Run tools on appropriate hardware

The Proof of Concept phase of this research (section 6.2, page 67) indicated the need for appropriate

hardware to run SONAR, since it is a heavy tool. When using a physical machine, the following

recommendations apply. When using a virtual machine, an approximation of the physical machine

recommendations applies.

1. CPU: this is the primary bottleneck. Faster is better and there is no hard minimum or

maximum speed; but due to the increasing price per unit of speed, an affordable CPU in the

high-end segment would be recommended.

2. RAM: at least 4 GBytes are needed, at least 6 GBytes is recommended.

J.H. Hegeman – Master Thesis – Unrestricted version 89

3. Disk I/O: analysis involves many read/write operations; it is recommended to use a striped

RAID array of fast SATA300 disks (do not use Solid State disks due to expected quick wear

caused by many small I/O operations). Also, consider using drives with a large cache.

4. Storage capacity requirements are limited. As a rule-of-thumb, take 30GBytes for the

Operating and software, plus one additional GByte for each project to be analyzed.

8.4. Integrate analysis in PDC Nightly Builds

It is recommended that the analysis method becomes part of the ‘nightly build’ process at the

Professional Development Center (see paragraph 2.1.1 on page 19) of Info Support. This ensures that

developers have access to actual analysis results and can aid them in developing ‘maintainable’

applications. A safe way to technically integrate the method in the process is by performing the

following steps. The analysis server is a separate (physical or virtual) server.

1. Initiate analysis be calling an executable script from the existing build procedure

2. Using this script, copy the source tree (including dependencies, libraries etcetera) to the

analysis server

3. For .Net projects:

a. Merge the solutions the project consists of using merge-solutions (see 6.2.3)

b. Install a pom.xml project object model with appropriate parameters (can be done

using a script)

4. Compile the project, write messages to a location that is accessible by developers

5. Run the analysis, write messages to a location that is accessible by developers

Note that is it is highly recommended to work on a copy of the source code tree, since the Sonar

analysis procedure may modify this tree, especially in the case of .Net projects that are to be merged

into one solution (see 6.2.3). It may be possible to run the analysis on a source tree without

modifying it, but this would require careful configuration.

If the analysis succeeded, the results will be available through the Sonar interface as depicted in

appendix D. If the analysis fails, the error logs will indicate which problems to solve. Integration of

the display of results in the ‘regular’ nightly build interface is possible in several ways. The most

simple way is by linking to the Sonar interface. Another option is to include and auto-load a custom

Sonar dashboard in a frame-like construction.

The described approach is safe since it minimizes the interference with existing procedures, on a

source code as well as performance level, which is a recommended approach in the initial phase of

using the method in production mode. Drawback of this approach is that it may not be the most

efficient procedure in terms of computer resource requirements.

8.5. Sell Quality Assessment as a service

Using the results of this research, Info Support could sell software quality assessment as a service to

customers. The service would be comparable to that of the Software Improvement Group (SIG), in

which a project’s source code is analyzed by SIG, resulting in a report (see 2.4.4). The manual work

that needs to be done is to write a report around an automated assessment, providing useful

information on how to interpret results and to provide recommendations for increasing quality

and/or reducing business risks. For these reports, templates can be used to reduce the amount of

manual work. The actual quality indices in the reports would be very comparable to SIG audits, since

J.H. Hegeman – Master Thesis – Unrestricted version 90

a comparable quality model is used. Recently, Info Support started an ‘Audit Services’ projects, in

which this suggestion fits quite well. Also, considering the relatively low amount of work needed to

perform an automated audit and the ‘professionalism’ of SIG(-like) audit reports, this opportunity has

a low risk and high potential benefits.

To create audit reports that match SIG results as closely as possible, it is possible to ‘reverse-

engineer’ one or more SIG audit reports into a configuration of the SQALE quality model. The

configuration of the SIG plugin for Sonar as described in 2.4.4 could be used as a basis. A one-on-one

mapping between SIG quality aspects and SQALE characteristics should be defined. while extensions

could be made based upon the audit reports. Validation can be done by performing assessments of

the projects of which a SIG-audit is available. Note that while it is deemed possible to create the

mentioned one-on-one mapping, the paradigms used by the models defer greatly, which may make it

impossible to fully imitate SIG. This is primarily caused by the non-existence of a benchmarking

repository. The introduction of such a database is a suggestion for future research (see 10.1)

8.6. Assign method responsibility and authority

Working with the method at an operational level, and actually understanding it, requires knowledge.

The results of applying the method (quality indicator values) are very easy to understand, but the

method itself is more complex (see 2.4.6). It is, therefore, recommended to pay attention to the

process of gaining this knowledge and storing and transferring it if necessary. One person is

recommended to be made responsible for the technical aspect of the method. This person should

know the setup of the method and how to use it, and also be able to make modifications if

necessary. Knowledge of the method should be shared by a small number of users, i.e. 2 or 3,

including the person responsible. This way, there will always be someone who knows how to operate

the method and no single point of failure.

Preferably, the persons with knowledge of the method are also familiar with Info Support coding

rules for both Java and C#, so that they can enhance the model configuration if needed. This is

consistent with the requirement for authority as mentioned in 7.4.10. It is also recommended that

the person(s) responsible become a member of the Sonar user mailing list

(user@sonar.codehaus.org), which in this project has proven to be a useful resource in case of

problems or support questions.

8.7. Improve incident registration procedure

Details of this recommendation are left out of the unrestricted version of this thesis.

J.H. Hegeman – Master Thesis – Unrestricted version 91

9. Discussion
The results of this project arose a number of items that allow for further discussion. Some of them

are elaborated upon in this chapter, namely:

- The fact that the SQALE method is not capable of covering every aspect of software quality

assurance;

- The tool and method survey as well as the configuration methods and conclusions are

generalizable, while the actual configuration and correlations can be considered context-specific

due to the flexibility of the model;

- The remediation cost paradigm is suitable for the intended purpose, but does have

shortcomings;

- What the term ‘quality’ actually means stays context-dependent, stakeholder-dependent, and an

ongoing topic of inconclusive debate.

9.1. What the Method Does Not Do

The validated software quality assessment method described in this thesis can be used to measure a

number of aspects of quality (see 2.4). There are, however, things that are explicitly beyond the

scope of the capabilities of the method. For these things, the method cannot and should not be used.

This section identifies a number of quality assessment aspects that are not covered by the method,

and indicates what could be done to assure that these aspects receive sufficient attention.

9.1.1. Functionality Verification

An automated process can only act upon the input it receives. Since the ‘intended functionality

description’ of a software system is no input to the tools discussed in this thesis, the automated

quality assessment process cannot verify that software ‘does what is should do’. As an extreme

example, consider a software system that is supposed to allow a local government to manage a road

network maintenance schedule, but has an implementation that is only capable of displaying the text

“Hello, world!” to the user. Although it is clear that this piece of software is unsuitable for its

intended purpose and does not meet requirements, its quality as measured by software tools may

still be very high if the implementation conforms to the requirements as configured in the quality

model. This means that in no way can an automated quality assessment process that has only source

code and a quality model configuration as input be used to substitute any part of the requirements

engineering and validation process; a ‘high’ source code quality is not an indication whatsoever that

a system meets any of its functional requirements. The method, therefore, should be used in

addition to existing components of the software development and/or maintenance process. See, for

example (Lauesen 2002) for information on pre-implementation requirements engineering and

functionality verification.

9.1.2. Test Quality

While there are rules for both unit test coverage (by line and branch) and unit test results, there is no

method of assessing the quality of the tests themselves. For example, if tests are made that call all

methods of all classes, but always succeed, Sonar will be unable to notice this. More general, if a

developer doesn’t ‘like’ a rule, he/she might be able to fake conformation in the case of some rules.

Unit test coverage is one of these.

J.H. Hegeman – Master Thesis – Unrestricted version 92

9.1.3. Non-source code components

Projects may contain components that do not consist of Java or C# code. For example, this could be

XML schemas and files that are used by the software as a resource. It should be noted that Sonar

does not take these files into account, since all available rules concern pure Java or C# code. This is a

limitation of the method that becomes more relevant for projects which large amounts of non-

regular sources. Additional quality assurance methods may be used to cover these. This makes the

method less suitable for, for example, web applications for which specific programming and scripting

languages are used to program user interaction, such as html or jsp.

9.1.4. Process metrics

The process of software management not only depends on the quality of the software, but also on

the quality of the software management or maintenance process. More company-specific that

product-specific, this process determines how and how well software management tasks are carried

out. Software may be very maintainable, but of not good maintenance procedure exist, the result

may still be that inadequate management services are delivered. Examples of aspect of process

quality are programmer skills, quality of customer communications, speed of issue resolving and

support availability. Formalized quality models for the maintenance process exist or are being

developed, i.e. (April 2005), (Kitchenham 1999).

9.2. On Correlation-limiting factors

The correlation of SQALE measurements with expert opinions have values that we mostly quantified

as ‘medium’ (3.5.1 and 7.3). We argued that we could further increase correlations by allowing the

configuration to be tweaked for the purpose of high correlations only, but that this is not something

that we should want to do (7.4). Furthermore, there are possible reasons for these correlations to

have a limited value. Verifying these reasons is impossible or beyond the scope of this research, but

we mention some of them for the reader to consider.

1. Although it was stated to the expert that the quality assessment concerned source code only,

expert may implicitly and/or unconsciously include other aspects of source code in their

judgment. This may concern things like documentation, the relationship with the customer,

the history of a project, etcetera. These things may influence the opinions of expert, limiting

the expected correlation with objective SQALE results

2. Expert opinions are inherently subjective. An enthusiastic expert may, for example, give

higher score for a project than a less enthusiastic expert. Also, things like mood, the amount

of currently open issues in a project, the weather, the time of the day, the day of the week,

the length of unexpected traffic jams and the amount of consumed coffee may play a role.

This may sound somewhat far-fetched, but we cannot falsify the hypotheses that the

mentioned examples decrease the potential correlation with SQALE measurements.

3. SQALE measurements are taken from a specific version of software. Although we have in the

survey referred to specific version numbers, an expert opinions may implicitly have a

stronger historic perspective. For example, if two project have an equal objective quality

now, but one has always have a high quality and the other has been enhanced after years of

issues, experts may consider the first one to be better.

J.H. Hegeman – Master Thesis – Unrestricted version 93

4. In section 4.3 we identified a correlation of ratings for individual quality characteristics by

experts, which we did not see in the SQALE measurements (section 7.2). It may be the case

that expert are unable to conceptually separate the characteristics, i.e. they don’t know the

boundaries between reliability, testability etc, while SQALE has very strictly separated

rulesets attached to each characteristic.

More reasons could be imagined, all in the form of ‘maybe’-like statements that we cannot simply

falsify. The point that we make with this issue is that we should be satisfied with correlations with

‘medium’ values. The same is true for other research projects that use expert opinions in a

comparable way.

9.3. Generalizability of Research Results

This research was conducted at a specific company, that supplied the sample data used in the

validation phase. This paragraph discusses the generalizability of the results of this research, i.e. the

likeliness of results being applicable in a broader context. This elaboration will be provided per

research aspect.

9.3.1. Background information and Tool selection

The background information presented in this thesis, mainly on quality models, is not tied to a

company context. It is inherently general and therefore suitable for use in any context. The survey of

tools is general in the sense that it objectively describes a number of tools. The selection of tools,

however, is based upon requirements that were mainly formulated by Info Support. In a different

context, the selection phase may have yielded a different results. The comparison tables could

provide the information necessary to make that choice. For example, in a context is which a SaaS

solution is not considered a problem, one might prefer Kalistick over Sonar since it natively supports

both Java and C#, while Sonar requires a set of plugins to get C# support to work.

It is relevant to mention that it is not necessarily important which tool is used, as long as it uses an

appropriate quality model. The tool is merely something that provides us a method to apply a quality

model in a practical context. Although a tool selection needs to be made in order to perform the

proof of concept, a different tool which uses the same quality model should yield the same research

results, as long as there are no major implementation differences.

9.3.2. Research Design

The research design section basically describes a sequence of steps, namely 1) retrieve expert

opinions on quality, 2) retrieve financial indicators, 3) perform the proof of concept and 4) draw

conclusions.

In theory, the research structure could be repeated in any context, the main precondition being the

availability of sample project source code, experts and financial data. A problem with in the

execution of the research design described in this thesis is the lack of quality of the financial

information. When reconducting this research in a different context, the following things could be

done to increase the usefulness of this validation data retrieval aspect:

J.H. Hegeman – Master Thesis – Unrestricted version 94

• Only select external projects. This gives a better guarantee for the quality of financial

information, since this information is used to bill clients. In this research, it was not possible

to apply this constraint due to the low number of actively maintained external projects (n=6).

• Reduce customer diversity. The way customers handle software may influence the number of

reported incidents. For example, some customers may provide detailed descriptions of issues

with their managed software, while others just call to shout it is broken. Also, some

customers may ignore small issues and find workarounds, while others want everything to be

fixed. No method to take these things into account is defined in this research, as no

possibilities were seen to do so. To reduce the need to address this issue, use a number of

project from one customer or a set of similar customers (i.e. governmental organizations).

A suggestion to incorporate these recommendations is to select a set of open source projects of

which source code is freely available. Financial quality information can be obtained from the incident

registration (ticketing) system. For example, the average time required to close a ticket can be

considered a quality indicator (Luijten 2010).

It should be noted that the financial quality indicator defined in the research design could not be

validated. Due to the low quality of the data obtained in this research aspect, we cannot easily draw

conclusions about the validity of the indicator in this research. This should be taken into account

when performing the research in a different context; if a correlation cannot be found, it may be an

option to make appropriate modifications to the indicator.

9.3.3. Validation Results

In the validation phase of this research, we validated the results of Sonar quality measurements by

calculating the correlation with expert opinions and financial indicators. Can we say something about

the generalizability of the validation results?

Important in answering this question is the fact that the SQALE model is in fact very flexible; it

defines a set of characteristics and sub characteristics and a method of calculating indices and

ratings. It allows full freedom when it comes down to defining metrics, configuring remediation costs

and assigning metrics to sub characteristics. This flexibility allows the method to be configured to

match context-specific coding policies. A validation of measurements, therefore, does not mean that

the method will always yield ‘correct’ results. A better way of putting it would be that the method

can yield correct results when properly configured to suit contextual needs. One might wonder if this

is true for any context. Since ‘any’ is a broad term, this can never be proven. The enormous set of

available rules, however, implies that the possibilities to configure SQALE to match contextual needs

are quite large. Based on this, it is reasonable to assume that for most organizations that develop or

manage software using a well-defined set of coding rules and software quality standards, the method

will provide adequate quality information.

9.4. The Remediation Cost Paradigm

The SQALE quality model is based on the Remediation Cost paradigm (see 2.4.6 on page 5). Basically,

for each quality characteristic, the amount of time needed to repair all issues, i.e. to reach a perfect

score on this characteristic, is calculated and compared to the total development cost of the project.

J.H. Hegeman – Master Thesis – Unrestricted version 95

The SQALE score is calculated by mapping the divisions of these values to a scale with five discrete

levels (see Figure 13 on page 31 for an example). A number of thoughts about this method is

addressed here.

• This paradigm does not detect the lack of implementation that ‘should be there’. For

example, if a software project does not contain any implementation that contributes to the

testability of the application, it’s ‘Testability’ remediation costs would be 0 and therefore, by

definition, an ‘A’ rating will be given. This problem can, at least for a part, be addressed by

the use of rules that assess the existence of certain types of code (i.e. unit test code

coverage). Conforming to what has already been mentioned in 9.1.1, however, the method

can do some reflection but cannot look ‘beyond the code’. This means that code of which the

incorrect nonexistence cannot be detected by the analysis of existing code cannot be taken

into account in the quality judgment.

• In the paradigm, each rule is configured with a fixed amount of time to fix one violation. This

means that to optimally configure the model, a method to properly estimate these

remediation costs needs to be defined. This is very hard, especially when one takes into

account the fact that the value is supposed to include post-implementation testing; Also, the

fixed value relies on the assumption that there exists a linear relationship between the

amount of violations per rule and the time needed to repair all these violations. In some

cases, this is not necessarily true. For example, consider the situation in which a variable

name does not conform to specified parameters. If the variable is used 25 times in the

project, the remediation cost will be 25 times the remediation cost per violation. In reality,

however, this issue will be fixed using a refactoring function. The amount of effort needed by

the programmer is therefore close to constant and independent of the number of violations.

The SQALE implementation in Sonar incorporates a feature that partially fixes this by

allowing the user to configure constant remediation costs per file containing one or more

violations instead of per violation. The SQALE standard itself, however, allows for more

complex functions to be defined. A possible enhancement of the Sonar SQALE plugin would

be to implement the possibility to define more complex functions.

• The paradigm does not incorporate the concept of issue severeness. Remediation costs do

not necessarily tell the user anything on how bad a rule violation actually is; it only tells the

user how much time it is going to cost to fix it. This issue is addressed in a proposal for an

extension of the SQALE model (see section 7.5.2.2 on page 86), but this extension is, of

course, not incorporated in contemporarily available tools. However, Sonar does allow the

user to define the severeness of issues and makes this information available in analysis

results. This information, however, is not integrated with the SQALE results, and provided to

the user separately.

9.5. On the Concept of Quality

We have not yet elaborated upon the concept of quality, and the extent to which remediation costs

are or are not a suitable paradigm to look at it.

In the introduction section (chapter 1), we already stated that quality has context-specific definitions.

An important aspect of the context is the goal. In general, quantitative quality assessment provides a

score, on a scale, indicating the level of quality. But what does a higher, or lower, quality mean? An

J.H. Hegeman – Master Thesis – Unrestricted version 96

often-seen term in this context is ‘fitness for use’ (i.e. Tayi 1998), indicating that a higher quality

means that the artifact under considerations is more suitable to use for its intended purpose. When

talking about source code assessment for maintainability purposes, rating several aspects of

maintainability seems consistent with this ‘fitness for use’ concept.

Also, the remediation cost paradigm expressed (lack of) quality in terms of time, or money, required

to repair all issues in an artifact. So, quality/maintainability is increased by investing time or money in

repairing defects. Examples of these defects are methods that are too long, classes that have

insufficient unit test coverage and unsafe exception handling. Indeed, these repairs have a direct

positive impact on the maintainability of software and therefore increase the fitness for use.

But in this case we only look at the situation from the perspective of the people that perform

software management task. Is the used definition of quality also relevant for other stakeholders? An

important stakeholder is the customer, the party actually using the software. A higher maintainability

has advantages, like faster issue resolving and lower maintenance costs. It is reasonable to assume

that a customer prefers to have more service for less money, so, indirectly, the increase of

maintainability also has a positive impact on the quality of service as experienced by the customer. Is

this always the case for all stakeholders? Not necessarily. As a counterexample, consider the

individual employee that has managed software issue resolvement as his task, together with 20 other

employees. Now suppose that the quality of all managed software is increased to its maximum level.

Then, due to the fact that the software is better maintainable, the amount of maintenance work is

reduced and, unless new customers or projects are attracted, the number of employees may be

reduced as well.

So, the definition of quality is not only context-specific, but also stakeholder-specific. Also, this

project has shown that ‘context’ does not just mean ‘software development or maintenance’, but is

even specific for the company at which this takes place. This supports the claim by (Reeves 1994)

that no globally suitable definition of quality can exist.

To put the concept of quality in a broader perspective, we will list a number of views of ‘software

quality guru’s, summed up by the Belinge Institute of Technology in (Milicic 2011):

• Armand V. Feugenbaum (1992, American quality control expert and businessman) states that

‘Quality is based upon the customer’s actual experience with the product or service,

measured against his or her requirements’;

• Kauro Ishikawa (1915-1986, Japanese professor and quality management innovator) said that

quality should be defined according to standards containing shortcomings, and that quality

does not reflect constantly changing customer demands;

• Joseph M. Juran (1904-2008, management consultant, author of books on quality and quality

management) stated that quality can be those product features which meet the need of

customers and thereby provice product satisfaction, as well as freedom from deficiencies;

• Walter A. Shewhart (1891-1967, American physicist, engineer and statistician) stated that

quality can either be an objective reality independent of the existence of the customer, or

the subjective perspective dependent on individual thoughts, feelings or senses as s result of

the objective reality.

J.H. Hegeman – Master Thesis – Unrestricted version 97

We may conclude that due to the many aspects of quality, any attempt to formalize it will capture

only a subset of these aspects. And then, we may wonder what is the quality of this subset, and how

do we determine that. Over the course of that last century, quality-related publications have not led

to a converged, established notion of the concept. Therefore, what quality actually is may remain a

topic of interesting, though inconclusive discussion for a long time to come.

J.H. Hegeman – Master Thesis – Unrestricted version 98

J.H. Hegeman – Master Thesis – Unrestricted version 99

10. Future Research
In addition to the SQALE extension proposals from chapter 7.5, a number of other suggestions for

future research has been formulated.

10.1. Benchmark-based calibration

In this project, calibration of the quality model was performed based by applying several methods

that in general require the person performing the calibration to define what is good and bad. Since

this is an inherently non-trivial and subjective procedure (see paragraph 7.4.1), it would be

interesting to attempt to calibrate a SQALE configuration using a benchmarking repository,

comparable to the method used by SIG to calibrate their model (see 2.4.4). For example, analyzing a

large set of projects with SQALE may provide the following information:

• An empirically established mapping between SQALE indices and ratings. The SQALE method

allows the user to customize this mapping, but a large test set would allow us to establish a

mapping that would judge assessed projects on their relative quality to test set projects.

• An indication of rules that are often violated or often have high remediation cost. This may

indicate that these rules are not very important, that estimated remediation costs are too

high or fixing the issue is not considered worthwhile, all of which may be reasons to omit the

rule from the test set or to modify parameters.

• Information on rules that are hardly ever violated. These could be left out of the quality

model configuration to increase performance.

• If the repository contains multiple versions of the same project, it can be seen which issues

remain and which gets fixed. Issues that remain during different versions of a software

system may indicate that fixing these was not considered worthwhile, which may indicate

that a rule is not very important.

This information will allow us to recommend certain settings of SQALE. The model is, by definition,

very flexible. This can be considered an advantage, but also means that the use cannot just start

using the model but needs to configure it first. Configuration is hard due to the lack of best practices.

This benchmarking method could provide such practices.

10.2. Lines of Code versus Function Points

As indicated in background research design section 3.3.1.2, evidence exists for an approximately

linear relationship between lines of source code in a project and the number of function point of that

some project (Caldiera 1998)(Dolado 1997). Although the nature of the relationship is described in

literature, we were unable to find empirical evidence for the actual mathematical characteristics of

this relation. This information could be used to fill in variables in the function that describes the

relationship, making it more usable in a practical context.

From the literature, it follows that the relationship has the following structure:

S = a * F + C

Where:

- S = the size of the project (the number of Lines of Code)

- a = the scalar (additional LoC’s per FP)

- F = the number of Function Points in a system

- C = a constant to account for overhead

J.H. Hegeman – Master Thesis – Unrestricted version 100

Empirical research would allow us to validate the linear nature of the relationship, determine a value

for variable a and C and determine under which conditions this formula applies. This would fill up a

‘gap’ in the literature that currently appears to exist.

J.H. Hegeman – Master Thesis – Unrestricted version 101

11. Conclusion

11.1. Answers to the main Research Questions

In the introduction chapter, we stated the following primary research question:

How do Sonar SQALE quality assessment results of projects correlate to Info Support experiences

and expectations?

The research provided us an answer to this question: we learned that Sonar, combined with the

SQALE quality model, provides a working method to assess the quality of both Java and .Net projects.

We saw that the correlation of the values of these measurement with validation data is significant,

and can be increased by performing quality configuration calibration methods. This means that we

have found and validated a method to perform software source code quality assessment, which was

the main goal of this project.

11.2. Proof of Concept Setup

We demonstrated the capability of the identified Sonar tool and SQALE quality model to assess both

Java and .Net project by setting up the tooling on a virtual machine and performing assessments of

sample projects. The procedure to setup the tooling has been described so that it can be repeated.

No significant irresolvable problems were encountered when performing this setup.

11.2.1. Initial Correlations

Initially, Sonar was configured to use as many rules as possible, using default settings and a rule –

characteristic mapping obtained from the developers of Sonar .NET.

The results of the initial measurement answer research sub question “How are the sample projects

rated by a Sonar SQALE setup?” These results are displayed in Table 20 on page 73.

We correlated these results with the validation data with the following results:

- Sonar results vs. survey results: +0.41

- Sonar results vs. financial quality: +0.34

11.2.2. Optimizing the Configuration

In the research design, we identified a number of possibilities to optimize the configuration. An

optimization, in this context, is defined as a change in the quality model configuration that increases

the correlation of Sonar measurements with validation data. Ideas for optimization methods are

described in the research design section 3.5.4. A number of these methods has been applied to the

configuration of the Proof of Concept. By doing this, we answer the research sub question Which

methods to improve the quality of the quality model configuration exist?

After optimizing the configuration using Info Support coding rules, the correlation with validation

data was as follows:

- Sonar results vs. survey results: +0.50

- Sonar results vs. financial quality: +0.36

J.H. Hegeman – Master Thesis – Unrestricted version 102

11.3. Obtaining validation data

11.3.1. Expert Opinions

We obtained expert opinions by asking experts to rate four quality aspects (analyzability,

changeability, reliability and testability) of the sample projects on a nine point scale. We also asked

experts to rate their own confidence in the scores they provided.

In total, 11 experts rated 2 projects on average, so 22 project gradings were received, each

containing 4 values. Since the sample project set contained 9 projects, this provided us 2.4 gradings

per project on average. Average variance in the scores assigned by experts was 1.1. on a nine-point-

scale. We calculated final ratings per characteristic per project by taking a weighted sum (by

confidence) of provided ratings.

This results in a score for each characteristic for each project, and a total score for each project which

is the sum of the scores per characteristic. The calculation method is equivalent to the remediation

cost paradigm as used by the SQALE model.

Response statistics are displayed in Figure 27 on page 61. The obtained quality indicators that we use

as validation data are displayed in Table 13 on page 62. This information provides an answer to the

research sub question “How do Info Support experts rate the sample projects on relevant SQALE

characteristics?”

11.3.2. Financial Investigation

We attempted to obtain financial data on the sample projects. We first defined a financial quality

indicator, which we, based on literature and established equivalence relations, defined as the

amount of hours spent on problems and incidents in a project, per KLOC (thousand lines of source

code) in a specified time period.

Project sizes were obtained by Sonar. Activities were obtained from monthly reports and information

from the Incident Monitor information. We set the time period for the to the full year 2010.

We were able to obtain a quality indicator value for all of the projects. Due to a number of reasons,

however, the quality of the obtained is disputable. Reasons for this basically come down to problems

in the incident registration procedures at Info Support.

We used the obtained data to validate SQALE measurements, but kept in mind that the quality of this

selection of validation data may be insufficient to draw conclusions from identified correlations.

The obtained quality indicators that we used as validation data are displayed in Table 15 on page 63.

This information provides an answer to research sub question “What is the financial quality,

expressed as hours/KLOC, of the sample projects?”.

11.4. Other Findings

This research resulted in a number of findings that are outside the scope of the research design, but

still relevant.

11.4.1. Recommendations for Info Support

The following recommendations for Info Support were formulated:

J.H. Hegeman – Master Thesis – Unrestricted version 103

1. Do not attempt to develop new tools internally;

2. Keep an eye open for newer and better tools on the market;

3. Run tools on appropriate hardware;

4. Integrate analysis in PDC nightly builds;

5. Sell quality assessment as a service;

6. Assign responsibility for the method to a selected MITS employee;

7. Improve the incident registration procedure.

11.4.2. Enhancing the SQALE model

A number of enhancements to the SQALE quality model is proposed:

First, an extension to allow the model to work better with unbalanced configurations is proposed.

The extension introduces a balancing factor for each characteristic for each language, to that an

uneven distribution of rules over characteristics and rules over languages no longer leads to off-scale

ratings caused by the single index-to-rating mapping used by SQALE.

Second, an extension is proposed to incorporate the quality of ‘rule violation severeness’ in the

quality model. With this extension, the quality judgment is no longer limited to the remediation cost

paradigm. Aside from being able to see how long it will take to repair issues, the SQALE user will be

able to see the severeness of issues. This will aid the user in making an quality improvement plan.

11.5. Preliminary Research

Preliminary research provided us information necessary to develop a research design. From a

literature review on quality models we learned which mathematical procedures could be used to

translate source code metric values into high-level quality indicators. Several models were described.

We chose to use the SQALE (Software Quality Enhancement based on Lifecycle Expectations) model

in the practical aspect of this project. This model is based on the remediation cost paradigm and

provides a rating for several quality characteristics of a project on an A-E rating. These characteristics

are, amongst others, reliability, changeability, testability and analyzability.

Also, a survey of available tools was made by conducting a free search on the internet. These tools

were evaluated using several requirements, such as support for Java and .Net, quality model support

and support by business or community. It was discovered that many tools operate as a SaaS

(Software-as-a-Service) solution and many tools, especially commercial ones, use a propriety quality

model that does not provide required transparency. Result of this investigation was that, given the

context and constraints, Sonar, in addition to a number of plugins to enable .Net support and SQALE

support, was decided to be the most suitable tool to incorporate in the quality assessment method

to be developed. This also implies that the tool is used in the proof of concept of this project.

J.H. Hegeman – Master Thesis – Unrestricted version 104

J.H. Hegeman – Master Thesis – Unrestricted version 105

A. Bibliography

References, in alphabetical order.

(Abrahamsson 2002) P. Abrahamsson, O. Salo, J. Ronkainen, J. Warsta – Agile Software

Development Methods – Review and Analysis. ESPOO 2002, VTT Publications

478, ISBN 951-38-6010-8.

(Al-Kilidar 2005) H. Al-Kilidar, K. Cox, B. Kitchenham – The Use and Usefulness of the ISO/IEC

9126 Quality Standard, 2005 International Symposium on Empirical Software

Engineering, Nov. 18, 2005, Noosa Heads, Queensland, Australia

(Albrecht 1983) Albrecht, A.J. Gaffney, J.E. jr, Software Function, Source Lines of Code and

Development Effort Prediction: a Software Science Validation, IEEE

Transactions on Software Engineering, Volume SE-9 issue 6, p639-648, 1983

(April 2005) A. April e.a. – Software Maintenance Maturity Model (SMMM): the software

maintenance process model. Journal of Software Maintenance and Evolution:

Research and Practice, vol. 17, issue 3, pp 197-223, May.June 2005.

(Attarzadeh 2010) Atterzadeh, I., Siew Hock Ow – A Novel Soft Computing Model to Increase the

Accuracy of Software Development Cost Estimation. Proceedings of the 2nd

International Conference on Computer and Automation Engineering,

Singapore, 2010, p 603-607.

(Basili 1996) V.R. Basili, W.L. Melo, L.C. Brand – A Validation of Object-Oriented Design

Metrics as Quality Indicators – IEEE Transactions on Software Engineering,

vol. 22, no. 10, October 1996

(Benaroch 2002) Benaroch, M. – Managing Information Technology Investment Risk – a Real

Options Perspective. Journal of Management Information Systems, vol. 19

isue 2, p 43, 2002.

(Bergel 2009) A. Bergel et al - SQUALE – Software Quality Enhancement – Proceedings of

the 13th European Conference on Software Maintenance and Reengineering,

Kauserslautern, 2009, p285-288

(Boehm 1999) B. Boehm, S. Chulani – Modeling Software Defect Introduction and Removal –

COQUALMO (Constructive QUALity Model), USC-CSE Technical Report, 1999

(Boehm 2000) B. Boehm, C. Abts, S. Chulani – Software Development Cost Estimation

Approaches – A Survey. Annals of Software Engineering, vol. 10, no. 1-4,

p177-205, 2000.

(Briand 2002) L.C. Briand, J. Wüst, Empirical Studies of Quality Models in Object Oriented

Systems – Advances in Computers, volume 56, 2002

(Burris 2011) E. Burris, Software Quality Management (website). University of Missouri,

http://www1.sce.umkc.edu/~burrise/pl/software_quality_management/,

February 8, 2011.

(Caldiera 1998) G. Caldiera, G. Antoniol, R. Fiutem, C. Lokan - Definition and Experimental

Evaluation of Function Points for Object-Oriented Systems. Fifth International

Symposium on Software Metrics, Maryland, 1998

(Cast 2011) CAST Application Intelligence Platform, website,

http://www.castsoftware.com/Product/Application-Intelligence-

Platform.aspx, visited Feb 22, 2011

(Chamillard 2005) T. Chamillard, associate professor of CS, University of Colorado at Colorado

Springs, ISO 9126 paper handout, January 2005 (website, visited March 21

2011), http://www.cs.uccs.edu/~chamillard/cs536/Papers/9126Handout.pdf

(Chandra 2005) Chandra, S.S. and Chandra, K. – A Comparison of Java and C#, Journal of

Computing Sciences in Colleges, vol. 20 issue 3, Feb. 2005, Consortium for

Computing Sciences in Colleges, USA.

(Chen 1993) J.Y. Chen, J.F. Lu – A new Metric for Object Oriented Design – Information and

J.H. Hegeman – Master Thesis – Unrestricted version 106

Software Technology, vol. 35 issue 4, April 1993, pp 232-240.

(Chidamber 1994) S.R. Chidamber, C.F. Kemerer – A Metrics Suite for Object Oriented Design –

IEEE Transactions on Software Engineering, vol. 20, no. 6, June 1994, pp 476-

493.

(Chulani 1997) S. Chulani - Results of Delphi for the Defect Introduction Model – Sub Model of

the Cost/Quality Model Extension tot COCOMO II, Technical Report, University

of Southern California, CS Department, Center for SE, Los Angeles, USA, 1997.

(Cohen 1988) J. Cohen – Statistical Power Analysis for the Behavioral Sciences, second

edition, 1988, Lawrence Arlbaum Associates, Inc., USA, ISBN 0-8058-0283-5.

(Correia 2008) Correia, J.P. Visser, J. – Benchmarking Technical Quality of Software Products,

proceedings of the 15th working conference on reverse engineering, oct 15-

18, 2008, Antwerp, Belgium.

(Cox 1980) Eli P. Cox – The Optimal Number of Response Alternatives for a Scale: a

Review – Journal of Marketing Research, vol. 17, no. 4, 1980, p407-422.

(Cunningham 1992) W. Cunningham - The WyCash Portfolio Management System – Proceedings

of the 7th annual conference on Object-Oriented Programming Systems,

Languages, and Applicastions, Vancouver, British Columbia, Oct 1992,

Experience Report

(Daft 2003) R.L. Daft - Management - 6th edition, 2003, ISBN 0 03 035138 3, Thomson

Education

(Dolado 1997) J.J. Dolado – a Study of the relationships among Albrecht and Mark II Function

Points, Lines of Code 4GL and Effort, The Journal of Systems and Software,

vol. 37, issue 2, page 161 and on, 1997.

(Dromey 1995) R.G. Dromey – A Model for Software Product Quality. IEEE Transactions on

Software Engineering, vol. 21 issue 2, February 1995.

(Fenton 1997) Norman E. Fenton – Software Metrics: a Rigorous & Practical Approach, 2nd

edition revised printing, ISBN 0-534-95425-1, Int. Thomson Publishing, 1997

(Gruber 2007) H. Gruber, C. Korner, R. Plosch, S. Schiffer – Tool Support for ISO 14598 based

code quality assessment. Proceedings of the 6th conference on the Quality of

Information and Communications Technology, 2007, Lisbon, p21-29

(Guler 2002) I. Guler et al - Global Competition, Institutions, and the Diffusion of

Organizational Practices: The International Spread of ISO 9000 Quality

Certificates. Administrative Science Quarterly, Vol. 47 issue 2, June 2002,

p207-232.

(Haughey 2010) D. Haughey – An Introduction to Project Management – ProjectSmart, 2010,

http://www.projectsmart.co.uk/pdf/introduction-to-project-management.pdf

(Heitlager 2007) Heitlager, I., Kuipers, T., Visser, J. A Practical Model for Measuring

Maintainability, Software Improvement Group, 2007, p30-39

(Kitchenham 1999) Kitchenham, B.A. et al – Towards an Ontology of Software Maintenance -

Journal of Software Maintenance: Research and Practice, vol. 11 issue 6, pp

365-389, Nov/Dev 1999.

(Info Support 2011) Website Info Support BV, Veenendaal, the Netherlands:

www.infosupport.com, visited Feb. 15, 2011

(Tavaf 2010) Saeedeh Jadid Tavaf – Quality Evaluation in Transofrmation of Event Logs into

Visual Representations (MSc. Thesis), may 2009, University of Gothenburg,

dept. of Applied Information Technology (report no. 2010:066)

(Kalistic 2011) Kalistic - Agile Quality for Continuous Delivery – website

http://www.kalistick.com/, visited Feb 16, 2011.

(Laval 2008) J. Laval, A. Bergel, S. Ducasse – Assessing the Quality of your Software with

MoQam – FAMOOS, 2nd Workshop on FAMIX and Moose in Reengineering

(2008), p28-31

(Letouzey 2009) Letouzey, J.L., Coq Th. – The SQALE method for Assessing the Quality of

J.H. Hegeman – Master Thesis – Unrestricted version 107

Software Source Code, whitepaper, 2009, DNV IT GS France, Paris

(www.sqale.org)

(Letouzey 2010a) Letouzey, J.L., Coq Th. – The SQALE Models for Assessing the Quality of Real

Time Source Code, Proceedings of the Embedded Realtime Software and

Systems Symposium, May 2010, Toulouse, France.

(Letouzey 2010b) Letouzey, J.L., Coq Th. – The SQALE Analysis Model – An analysis model

compliant with the representation condition for assessing the Quality of

Software Source Code, Proceedings of the 2nd International Conference on

Advances in System Testing and Validation Lifecycle, Nice, France, Aug 2010

(Li 1993) W. Li, S. Henry – Oject Oriented Metrics Which Predict Maintainability –

Journal of Systems and Software, vol. 23 issue 2, November 1993, pp 111-

122.

(Linke 2008) R. Lincke, J. Lundberg, W. Löwe – Comparing Software Metrics Tools,

Proceedings of the 2008 International Symposium on Software Testing and

Analysis, USA, 2008.

(Luijten 2010) B. Luijten, J. Visser - Faster Defect Resolution with Higher Technical Quality of

Software. Proceedings of the 4th International Workshop on Software Quality

and Maintainability (SQM 2010), March 15, 2010, Madrid, Spain.

(Jørgenson 1999) M. Jørgenson, Software Quality Measurement, Advances in Engineering

Software 30, 1999, 907-912.

(Jung, 2004) H.W. Jung, S.H. Kim, C.S. Chung – Measuring Software Product Quality: a

Survey of ISO/IEC 9126, Software (IEEE), vol 21 issue 4, 2004, p88-92.

(Lauesen 2002) Soren Lauesen: Software Requirements: Styles and Techniques. Pearson

Education Ltd, 2002.

(Madachy 2008) R. Madachy, B. Boehm – Assessing Quality Processes with ODC COQUALMO,

Lecture Notes in Computer Science, Making Globally Distributed Software

Development a Success Story, volume 5007, 2008, p198-209

(McCal 1978) J.A. McCal, J.P. Cavano – A Framework for the Measurement of Software

Quality – Proceedings of the Software Quality Assurance Workshop on

Functional and Performance Issues, ACM, New York, 1978

(Metrixware 2011) Metrixware – website http://www.metrixware.com, visited Feb 22, 2011.

(Milicic 2011 D. Milicic - Software quality models – presentation, Blekinge Institute of

Technology, Sweden, visited June 16, 2011

http://www.bth.se/tek/besq.nsf/(WebFiles)/316446EBCD98499CC125706900

34683B/$FILE/chapter_1.pdf

(Moore 2006) Moore, D.S., McCabe G.P. Statistiek in de praktijk, theorieboek, 5e herziene

druk, 2006, ISBN 90-395-2360-6.

(Oppendijk 2008) F. Oppendijk: Comparison of the SIG Maintainability Model and the

Maintainability Index. Master thesis, Faculty of Science, University of

Amsterdam, 2008.

(Ortega 2003) M. Ortega, M. Pérez, T. Rojas – Construction of a Systemic Quality Model for

Evaluating a Software Product. Software Quality Journal 11, p 219-243, 2003.

(Reeves, 1994) Carol A. Reeves, David A. Bednar: Defining Quality: Alternatives and

Implications. The Academy of Management Review, Vol. 19 No. 3, Juli 1994.

(Rodgers 1988) J.L. Rodgers, W.A. Nicewander – Thirteen ways to look at the Correlation

Coefficient. The American Statistician, vol. 42 issue 1, p59-66, Feb. 1988

(Silberschatz 2009) A. Silberschatz – Operating System Concepts, 8th edition, 2009, Wiley.

(Slaughter 1998) Slaughter, S.A., Harter, D.E., Krishnan, M.S. – Evaluating the Cost of Software

Quality – Communications of the ACM, vol. 431 no. 8, Aug 1998.

(Slot 2010) Slot, R. – A Method for Valuing Enterprise Architecture based Business

Transformation and Measuring the Value of Solutions Architecture, PhD

thesis, University of Amsterdam, the Netherlands, 2010.

J.H. Hegeman – Master Thesis – Unrestricted version 108

(Sonar 2011) Sonar – website http://www.sonarsource.org visited Feb. 15, 2011

(Sonar .net 2011) Sonar .NET plugin website

http://docs.codehaus.org/display/SONAR/.Net+plugin visited Feb 18, 2011

(Sonar nemo 2011) Sonar ‘Nemo’ public demo, website, http://nemo.sonarsource.org/, visited

June 16, 2011.

(Sonar SIG 2011) Sonar SIG maintainability plugin website,

http://docs.codehaus.org/display/SONAR/SIG+Maintainability+Model

(Standish, 2001) The Standish Group International, Inc. - Extreme Chaos, 2001, p1-5

(Sqale 2011) SQALE – Method Definition Document, version 0.8, July 2010,

http://www.sqale.org/wp-content/uploads/2010/08/SQALE-Method-EN-V0-

08.pdf

(Squale 2011) SQualE – Software Quality Enhancement – website http://www.squale.org/

visited Feb. 15, 2011

(Sotos 2007) Sotos, A.E.C. e.a. The Non-Trasitivity of Peasron’s Correlation Coefficient: An

Educational Perspective, International Statistical Institute, 56th session, 2007

(Squoring 2011) SQuORING – A Collaborative Platform for Optimizing Source Quality – website

http://www.squoring.org visited Mar. 11, 2011.

(Tayi 1998) G.K. Tayi, D. P. Ballou, Examining Data Quality - Communications of the ACM,

vol. 41 issue 2, feb. 1998.

(Techdebt 2011) Second International Workshop on Managing Technical Debt, May 21, 2011,

Honolulu, Hawaii, USA (website)

http://www.sei.cmu.edu/community/td2011/program/index.cfm

(Trienekens 2008) J. Trienekens, P. Zuurbier - Quality and Safety Standards in the Food Industry,

developments and challenges. International Journal of Production Economics,

vol. 113, issue 1, May 2008, pp107-122

(Verhoef 2005) C. Verhoef – Quantifying the Value of IT Investments. Science of Computer

Programming, vol. 56, 2005, p315-342.

(Verhoef 2006) C. Verhoef - “IT-hoogleraar rekent af met TCO – Chris Verhoef bedenkt

methodiek voor financiële onderbouwing IT”, CIO magazine, april 2006, text

by Gijs Hillenius.

(Wieringa, 2007) Roel Wieringa: Writing a Report About Design Research, 2007. From: Reader

‘Problem Analysis and Solution Requirements’, dept. of Management and

Governance, University of Twente, October 2008, p87 – p96.

(Williams 2001) Williams, T.W., Mercer, M.R., Mucha, J.P., Kapur, R. – Code Coverage, what

does it mean in terms of Quality? Proceedings of the 2001 Reliability and

Maintainability Symposium, Philadelphia, PA, USA, January 2001.

(Woolderink 2007) C.B. Woolderink: Het bepalen van de onderhoudbaarheid van

objectgeorienteerde broncode door middel van metrieken. Master thesis,

Unversity of Amterdam, 2007.

(Zubrow 2004) D. Zubrow – Software Quality Requirements and Evaluation, the ISO 25000

Series – PSM Technical Working Group, Feb. 2004, Carnegie Mellon

University, Pittsburg,

http://www.psmsc.com/Downloads/TWGFeb04/04ZubrowISO25000SWQuali

tyMeasurement.pdf

J.H. Hegeman – Master Thesis – Unrestricted version 109

B. Lists of tables and figures

List of Tables

Table 1 Main Pearson correlation coefficients: Sonar measurements vs. validation data 5

Table 2 Research Question Terminology Table ... 15

Tabel 3 Qualixo model calculation example: metrics to practices .. 28

Table 4 Qualixo Score Interpretations ... 29

Table 5 SQALE mapping of Sub Characteristics to Characteristics (Sonar plugin default model) 30

Table 6 Quality Aspect Comparison .. 40

Table 7 Software Tool Comparison ... 40

Table 8 Survey scale definition .. 46

Table 9 SQALE characteristics subset selection .. 47

Table 10 Correlation Coefficient Qualifiactions .. 53

Table 11 Critical Pearson values (DF=7) .. 54

Tabel 12 Calibration method summary ... 57

Table 13 Initial average project ratings from survey ... 62

Table 14 Expert Characteristic Score correlations .. 62

Table 15 Financial Quality per Project ... 63

Table 16 Qualiy Definitions Overview ... 65

Table 17 Metric tools used by Sonar ... 69

Table 18 Modified rule list ... 71

Table 19 Rules per language per selected characteristic .. 72

Table 20 Initial Sonar measurements .. 73

Tabel 21 Validation data correlation ... 74

Table 22 Initial correlation values ... 75

Table 23 Characteristic correlations for initial Sonar run ... 77

Table 24 SQALE configuration using Info Support ruleset .. 78

Table 25 SQALE configuration with Info Support ruleset - after balancing .. 79

Table 26 Correlations after calibration ... 79

Table 27 SQALE Extension Proposal Example ... 83

Table 28 Comparison of Quality Assessment with and without SQALE model extension 84

Table 29 Default severity weights for SQALE extension ... 86

Table 30 Selected Projects ... Fout! Bladwijzer niet gedefinieerd.

J.H. Hegeman – Master Thesis – Unrestricted version 110

List of Figures

Figure 1 Research Design Overview .. 18

Figure 2 Project Management Diamond ... 19

Figure 3 Info Support PDC and MITS relations .. 20

Figure 4 Integration of ISO 9126 and ISO14598 into ISO25000 .. 20

Figure 5 Hierarchical view of the ISO/IEC 9126 quality model .. 21

Figure 6 ISO 14598 Quality Evaluation Model ... 23

Figure 7 Quality Model Concept. Arrows show input and output .. 23

Figure 8 Dromey hierarchy example ... 25

Figure 9 Sonar SIG model plugin: metric-indicator mappings ... 26

Figure 10 Benchmark example – Unit Test Coverage distribution .. 26

Figure 11 Qualixo Quality Model ... 28

Figure 12 SQALE quailty characteristics .. 29

Figure 13 an example SQALE score-rating-color mapping .. 31

Figure 14 Sonar SQALE Kiviat example (screenshot) ... 31

Figure 15 Full SQALE example ... 33

Figure 16 SQALE calculation example ... 34

Figure 17 Kalistick high-level quality indicator example (screenshot) .. 38

Figure 18 FPs and hours per FP according to Verhoef .. 42

Figure 19 Research Design - Steps Overview .. 43

Figure 20 Project Subset Selection Venn diagram .. 44

Figure 21 Relationship between time, money, LoC and FP in projects ... 50

Figure 22 Examples of linear relations and their Pearson coefficient values 52

Figure 23 Expected quality indicator relations .. 52

Figure 24 Correlation calculation & conclusion flowchart .. 55

Figure 25 Rule - characteristic mapping flowchart.. 58

Figure 26 Re-evaluation example diagram .. 59

Figure 27 Response frequencies and answer variance per project .. 61

Figure 28 Mapping of defined quality aspects to SQALE characteristics .. 65

Figure 29 ISO 9126 – SQALE characteristic equivalence relations. ... 67

Figure 30 Sonar SQALE configuration screenshot ... 72

Figure 31 Venn diagram of Sonar Rules .. 72

Figure 32 Validation data correlation .. 74

Figure 33 Initial Correlation Scatterplots .. 76

Figure 34 Sensitivity of initial findings ... 77

Figure 35 Correlation scatterplot after calibration ... 80

Figure 36 Correlation sensitivity after calibration ... 80

Figure 37 Rule severity approach example ... 85

Figure 38 SQALE severity kiviat extension example .. 87

J.H. Hegeman – Master Thesis – Unrestricted version 111

C. Digital Resources

This research uses, or has resulted in, a number of artifacts that cannot be published in this

document. These are available for download online, at http://www.erikhegeman.nl/research/qqm

This appendix describes the digital resources that are available.

1. Merge-solutions

Merge-solutions, a command line tool to merge related Visual Studio Solutions, required for

aggregation of analysis results: Source: http://code.google.com/p/merge-solutions/

Source code is available through Subversion using the following SVN checkout url:

http://merge-solutions.googlecode.com/svn/trunk/merge-solutions-read-only

The executable is also available at the download location in tools/merge-solutions.exe

Tool syntax:

merge-solutions.exe [/nonstop] [/fix] [/config solutionlist.txt] [/out
merged.sln] [solution1.sln solution2.sln ...]

 /fix: Regenerates duplicate project guids and replaces them in
corresponding project/solution files
 requires write-access to project and solution files

 /config solutionlist.txt: Takes list of new-line separated solution
paths from solutionlist.txt file

 /out merged.sln: path to output solution file. Default is 'merged.sln'

 /nonstop: do not prompt for keypress if there were errors/warnings

 solution?.sln - list of solutions to be merged

2. Available Rules List

A full list of rules that can be used in Sonar is available as a digital resource. This is a 18-page Excel

document, indicating per rule the language (Java or C#) for which it is applicable and the rule engine

that provides the metric. The list can be found in the Documents folder as ‘Full list of available rules’.

3. Configurations

In the course of this research, a number of Sonar configurations were used. These configurations

consists of two components, namely a ‘quality profile’, which is the general Sonar configuration that

specifies which rules to use, and a ‘SQALE model’, which defines the mapping of rules to sub

characteristics and the remediation costs of rules. The following versions are available:

• Sonar Quality Profiles and SQALE configurations (available for both Java and C#):

o ‘initial’ – the default configuration with all rules enabled

o ‘post-initial-pre-calibration’ - the configuration with all rules enabled except those

listed in Table 18 on page 71.

o ‘endeavour-calibrated’ – the configuration that uses a rule set based upon Info

Support PDC rules.

J.H. Hegeman – Master Thesis – Unrestricted version 112

J.H. Hegeman – Master Thesis – Unrestricted version 113

D. Sonar Dashboard Example

J.H. Hegeman – Master Thesis – Unrestricted version 114

J.H. Hegeman – Master Thesis – Unrestricted version 115

E. Survey Design

This appendix contains the actual design of the MITS survey that was conducted. It is in Dutch, since

the survey has been conducted in Dutch due to the fact that all MITS employees speak Dutch and for

most this is their mother tongue. For all projects that have been selected according to paragraph 3.1

of this thesis, an empty schema conforming to the example is included in the actual survey document.

Enquete Kwaliteitsperceptie

Deze enquete dient ter verzameling van gegevens over de perceptie van kwaliteit van projecten bij

Info Support. De uitkomsten worden gebruikt om resultaten van kwaliteitsmetingen op basis van

broncode te valideren. Dit in het kader van een WO-afstudeerproject, met als doel het ontwikkelen

van een methode voor automatische codekwaliteitsbeoordeling.

De enquete is verspreid onder alle MITS-medewerkers. Resultaten worden anoniem verwerkt en er

zijn geen goede of foute antwoorden. Het invullen van de enquete kan in ca. 10 minuten. Indienen

van de ingevulde enquete kan door het ingevulde Word-bestand te mailen naar het mailadres

onderaan de ze pagina.

Lees deze korte instructies voordat u deze enquete invult.

In deze enquete wordt u verzocht om MITS-projecten te beoordelen op een aantal aspecten. Per

project vult u per aspect in, in hoeverre u van mening bent dat het betreffende project voldoet aan

het aspect. Op de volgende pagina staat een voorbeeld. Ook vult u in hoe goed u het project kent.

Indien u aangeeft geen kennis van het project te hebben, hoeft u het project verder niet te

beoordelen.

Over de volgende aspecten wordt u gevraagd per project een beoordeling toe te kennen. De

beschrijving is gebaseerd op de documentatie van de ISO-standaard en het SQALE quality model

(www.sqale.org)

• Analyseerbaarheid: karakteriseert de leesbaarheid en begrijpbaarheid van de broncode

van de applicatie.

• Veranderbaarheid: karakteriseert de hoeveelheid moeite die moet worden gedaan om

een verandering in het systeem te realiseren.

• Betrouwbaarheid: Karakteriseert de mate waarin het systeem ‘tegen een stootje kan’

tijdens gebruik, bijv. door correct te reageren op foutieve invoer, correct fouten af te

handelen, geen thread-problemen te kennen etc.

• Testbaarheid: karakteriseert de hoeveelheid moeite die nodig is om een verandering in

het systeem te testen.

Bij voorbaat dank voor uw deelname!

Erik Hegeman

erikh@infosupport.com

Afstudeerder Universiteit Twente

J.H. Hegeman – Master Thesis – Unrestricted version 116

Voorbeeld

In Tabel 1 ziet u een voorbeeld van een ingevuld schema van het project ‘Voorbeeldproject X’. Op elk

van de kwaliteitsaspecten is een score ingevoerd op de schaal ‘volledig mee oneens’ tot ‘volledig

mee eens’. Tevens schat de deelnemer zijn/haar kennis van het project in als ‘beperkt’.

De schema’s die u als deelnemer kunt invullen beginnen op de volgende pagina.

Voorbeeldproject X

 Geen Beperkt Veel

Uw kennis van het project x

Het project is…

V
o

lle
d

ig
 m

e
e

o
n

e
e

n
s

st
e

rk
 m

e
e

o
n

e
e

n
s

m
e

e
 o

n
e

e
n

s

e
n

ig
sz

in
s

m
e

e

o
n

e
e

n
s

N
e

u
tr

a
a

l

e
n

ig
sz

in
s

m
e

e

e
e

n
s

m
e

e
 e

e
n

s

st
e

rk
 m

e
e

 e
e

n
s

V
o

lle
d

ig
 m

e
e

e
e

n
s

Analyseerbaar x

Veranderbaar x

Betrouwbaar x

Testbaar x

Tabel 1

(After this example, nine similar boxes for the selected projects follow. These are not included in this

thesis appendix)

J.H. Hegeman – Master Thesis – Unrestricted version 117

F. Survey Results – raw result overview [CONFIDENTIAL]

The unrestricted version of this thesis does not contain this confidential appendix.

J.H. Hegeman – Master Thesis – Unrestricted version 118

J.H. Hegeman – Master Thesis – Unrestricted version 119

G. Method Setup notes

1. General Setup
Using a Microsoft Windows XP SP3 Virtual machine (IS Unattended Install)

Software: Notepad++, WinSCP, WinRAR, all windows updates

- Downloaded Sonar 2.6 to c:\apps\sonar (a newer version of Sonar is

currently available. You can try to use the newest version, but this has

not been tested).

- Downloaded and installed MySQL community server 5.5.9, detailed

 configuration, used all standard settings. The test server uses root

password ‘admin’.

- Included MySQL bin directory in windows PATH system environment variable

- Modified sonar/conf/sonar.properties to use MySQL instead of Derby

 (comment/uncomment the relevant lines)

- Created the database and user on the SQL server:

mysql -u root -p

admin

create database sonar;

create user 'sonar'@'%' identified by 'sonar';

grant all privileges on *.* to 'sonar';

flush privileges;

exit

- Added firewall exception for TCP port 9000

- Execute

sonar/bin/windows-x86-32/InstallNTService

- Start service and wait for three minutes for DB auto-initialization

- Test: browse to http://localhost:9000 – You should now see the Sonar main

 interface. Admin login should be possible using credentials admin/admin

- Downloaded Maven 3.03 to apps/maven

- Inserted this in maven/conf/settings.xml:

 <profile>

 <id>sonar</id>

 <activation>

 <activeByDefault>true</activeByDefault>

 </activation>

 <properties>

 <sonar.jdbc.url>

 jdbc:mysql://localhost:3306/sonar?useUnicode=

 true&characterEncoding=utf8

 </sonar.jdbc.url>

 <sonar.jdbc.driverClassName>

com.mysql.jdbc.Driver

</sonar.jdbc.driverClassName>

 <sonar.jdbc.username>sonar</sonar.jdbc.username>

 <sonar.jdbc.password>sonar</sonar.jdbc.password>

 <sonar.host.url>http://localhost:9000</sonar.host.url>

 </properties>

 </profile>

Installed prerequisites for the Maven sonar plugin

- .NET SDKs version 2.0, 3.5 and 4.0

- Gallio

J.H. Hegeman – Master Thesis – Unrestricted version 120

- PartCover

- Fxcop (use version 10.0 which is part of Windows SDK 7.1, installer can

be found in the Fxcop folder of the installation after installing the SDK)

- Gendarme

- SourceMonitor

- StyleCop

Note that it is recommended to install Microsoft Visual Studio and

Silverlight libraries on the analysis machine, since .Net projects may

depend on them. If a dependency is missing, the analysis logfile will

indicate which additional components should be installed. Appendix H shows

a list of all software packages installed on the PoC VM.

- added to maven/conf/settings.xml:

 <profile>

 <id>dotnet</id>

 <activation>

 <!-- Optional activation by default -->

 <activeByDefault>true</activeByDefault>

 </activation>

 <properties>

<!--Locations of the .Net installations (pick the one you need)-->

 <!--(below the default values for each dotnet version supported)-->

 <dotnet.2.0.sdk.directory>

C:/WINDOWS/Microsoft.NET/Framework/v2.0.50727

</dotnet.2.0.sdk.directory>

<dotnet.3.5.sdk.directory>

C:/WINDOWS/Microsoft.NET/Framework/v3.5

</dotnet.3.5.sdk.directory>

<dotnet.4.0.sdk.directory>

C:/WINDOWS/Microsoft.NET/Framework/v4.0.30319

</dotnet.4.0.sdk.directory>

 <!-- Location of the Gallio installation-->

 <gallio.directory>C:/Program Files/Gallio</gallio.directory>

 <!-- Location of FxCop installation-->

 <fxcop.directory>

C:/Program Files/Microsoft FxCop 10.0

</fxcop.directory>

 <!-- Location of PartCover installation-->

 <partcover.directory>

C:/Program Files/PartCover/PartCover .NET 4.0

</partcover.directory>

 <!-- Location of Source Monitor installation-->

<sourcemonitor.directory>

C:/Program Files/SourceMonitor

</sourcemonitor.directory>

 <!-- Location of Gendarme installation -->

 <gendarme.directory>

C:/Program Files/gendarme-2.6-bin

</gendarme.directory>

<!-- Location of StyleCop installation -->

 <stylecop.directory>

J.H. Hegeman – Master Thesis – Unrestricted version 121

C:/Program Files/Microsoft StyleCop 4.4.0.14

</stylecop.directory>

 </properties>

 </profile>

- Added Maven bin directory to system path

- Defined the JAVA_HOME environment variable (set to jdk1.6.0_x folder)

- Modified mvn.bat to increase the Java Heap size to 1GB

 @set MAVEN_OPTS=-Xmx1024M -Xms1024M

- Downloaded all .jar's listed at

 http://docs.codehaus.org/display/SONAR/.Net+plugin to

 apps/sonar/extensions/plugins

- Restart sonar service to load plugins

The SQALE plugin can simply be added to the apps/sonar/extensions/plugins

directory. To configure SQALE, be sure to perform the following steps from

the Sonar web interface:

- Load the quality profile XML (required for C# support)

- Set the global SQALE parameters (you can use the default settings)

- Enable all rules for all projects using the Quality dashboard

- Configure the dashboard (add SQALE widgets)

2. Setup Test

Run the following command from both a directory containing a Visual Studio Solution (.sln file) of a

.Net project and a pom.xml (see below), and a Java project, also defined by a pom.xml. This will

result in test project measurements being available through the Sonar web interface.

mvn install sonar:sonar

3. General Usage

To reset the Sonar database:

- Stop Sonar service

- Using mysql command prompt, drop all tables from database ‘sonar’

- Start Sonar service (automatically reconstructs DB schema)

- Wait for a few minutes before attempting to use Sonar

To increase performance, run Sonar as a Tomcat servlet (optional):

- Download Apache Tomcat 7 (download from http://tomcat.apache.org)

- Perform standard Windows Service installation

- Run build-war.bat from sonar/bin

- Move sonar.war to Tomcat webapps root folder, autodeploy will start

- Start the application from the management app at http://localhost:8080

- Add a firewall exception for TCP port 8080 to allow remote access

To analyaze Java Projects:

From the command line, go to the project directory containing pom.xml and type

J.H. Hegeman – Master Thesis – Unrestricted version 122

 mvn install sonar:sonar > maven.log

After the command has completed, check the error log to see if there are any errors. If there are, try

to resolve these and re-run the command. If there are no errors, compilation has succeeded and the

project should be visible in the Sonar home screen at http://localhost:9000

To analyze .Net Projects:

These projects are defined as a set of solutions. A tool is needed to merge these solutions into a

single artifact. From the root of the directory structure, use the following command sequence:

for /R %i in (*.sln) do echo %i >> solutions.txt

merge-solutions /nonstop /fix

 /config solutions.txt /out merged.sln

Also, define a pom.xml file based upon the default structure (shown below), fill out the appropriate

variables. After that, run

mvn install sonar:sonar > maven.log

J.H. Hegeman – Master Thesis – Unrestricted version 123

4. Default Pom.XML for .Net projects

<!--

 POM.XML template for Sonar dotnet support

 March 29, 2011 - Erik Hegeman, Info Support BV

 Set the following parameters:

 - Group, artifact, version and name

 - SLNFile

-->

<project xmlns=http://maven.apache.org/POM/4.0.0

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <!-- This block needs to be filled out per instance of the file -->

 <groupId>GroupIdentifier</groupId>

 <artifactId>ArtifactIdentifier</artifactId>

 <version>UndefinedVersion</version>

 <name>Name</name>

 <packaging>sln</packaging>

 <properties>

 <visual.studio.solution>SLNFile</visual.studio.solution> <!--define SLN file here-->

 <visual.test.project.pattern>*.Tests</visual.test.project.pattern>

 <dotnet.tool.version>3.5</dotnet.tool.version>

 <sonar.language>cs</sonar.language>

 </properties>

 <build>

 <plugins>

 <plugin>

 <groupId>org.codehaus.sonar-plugins.dotnet</groupId>

 <artifactId>maven-dotnet-plugin</artifactId>

 <extensions>true</extensions>

 <version>0.5</version>

 </plugin>

 <plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>sonar-maven-plugin</artifactId>

 <version>2.0-beta-2</version>

 <configuration>

 <language>cs</language>

 </configuration>

 </plugin>

 </plugins>

 </build>

</project>

J.H. Hegeman – Master Thesis – Unrestricted version 124

J.H. Hegeman – Master Thesis – Unrestricted version 125

H. PoC Technical Setup Overview

J.H. Hegeman – Master Thesis – Unrestricted version 126

J.H. Hegeman – Master Thesis – Unrestricted version 127

I. SQALE configuration overview

C Sc Rule name Lang

Remediation function

(cost/violation in days)

1 A
n

a
ly

sa
b

ility

R
e

a
d

a
b

ility

Constant Name java linear (0.01)

2 Local Final Variable Name java linear (0.03)

3 Local Variable Name java linear (0.03)

4 Member name java linear (0.03)

5 Method Name java linear (0.03)

6 Package name java linear (0.125)

7 Parameter Name java linear (0.01)

8 Static Variable Name java linear (0.01)

9 Type Name java linear (0.03)

10 Redundant import java constant_resource (0.01)

11 Unused Imports java constant_resource (0.01)

12 Line Length java constant_resource (0.01)

13 Operator Wrap java linear (0.03)

14 Paren Pad java constant_resource (0.01)

15 Modifier Order java linear (0.01)

16 Avoid Nested Blocks java linear (0.125)

17 Right Curly java linear (0.01)

18 Array Type Style java linear (0.01)

19 Upper Ell java linear (0.01)

20 Abstract Class Name java linear (0.03)

21 Anon Inner Length java linear (0.125)

22 Annotation Use Style java linear (0.03)

23 Array Trailing Comma java linear (0.01)

24 Declaration Order java linear (0.01)

25 Generic Whitespace java constant_resource (0.01)

26 Import Order java constant_resource (0.01)

27 Indentation java constant_resource (0.01)

28 Left Curly java constant_resource (0.01)

29 Method Param Pad java linear (0.01)

30 Multiple Variable Declarations java linear (0.03)

31 No Whitespace Before java linear (0.01)

32 No Whitespace After java constant_resource (0.01)

33 Redundant Modifier java linear (0.01)

34 Whitespace After java constant_resource (0.01)

35 Whitespace Around java constant_resource (0.01)

36 Abstract naming java linear (0.03)

37 Avoid Using Octal Values java linear (0.125)

38 Boolean Get Method Name java linear (0.03)

39 Dont Import Java Lang java constant_resource (0.01)

40 Duplicate Imports java constant_resource (0.01)

41 For Loops Must Use Braces java linear (0.03)

42 For Loop Should Be While Loop java linear (0.03)

43 Import From Same Package java constant_resource (0.01)

44 Long Variable java linear (0.03)

45 Message Driven Bean And Session Bean Naming Convention java linear (0.01)

46 Naming - Avoid dollar signs java linear (0.01)

47 Naming - Avoid field name matching method name java linear (0.01)

48 Naming - Avoid field name matching type name java linear (0.01)

49 Naming - Class naming conventions java linear (0.01)

50 Naming - Method naming conventions java linear (0.01)

J.H. Hegeman – Master Thesis – Unrestricted version 128

51 Naming - Method with same name as enclosing class java linear (0.01)

52 Naming - Misleading variable name java linear (0.01)

53 Naming - Short method name java linear (0.01)

54 Naming - Suspicious Hashcode method name java linear (0.01)

55 Naming - Suspicious constant field name java linear (0.01)

56 Naming - Suspicious equals method name java linear (0.01)

57 Naming - Variable naming conventions java linear (0.01)

58 Package case java linear (0.03)

59 Proper Logger java linear (0.03)

60 Remote Interface Naming Convention java linear (0.01)

61 Remote Session Interface Naming Convention java linear (0.01)

62 Short Variable java linear (0.03)

63 String To String java linear (0.03)

64 Too Many Static Imports java linear (0.125)

65 Too few branches for a switch statement java linear (0.03)

66 Unnecessary Return java linear (0.03)

67 Unused imports java constant_resource (0.01)

68 Use Collection Is Empty java linear (0.03)

69 Useless String Value Of java linear (0.03)

70 While Loops Must Use Braces java linear (0.03)

71 Trailing Comment java linear (0.01)

72 Local Home Naming Convention java linear (0.01)

73 Local Interface Session Naming Convention java linear (0.01)

74 Unnecessary Final Modifier java linear (0.01)

75 Unnecessary parentheses java linear (0.03)

76 Unused Modifier java linear (0.03)

77 Use String Buffer Length java linear (0.03)

78 Method names should start with a lower case letter java linear (0.03)

79 Class names should start with an upper case letter java linear (0.03)

80 Dodgy - Class too big for analysis java linear (0.375)

81 Field names should start with a lower case letter java linear (0.03)

82 DoNotPrefixValuesWithEnumNameRule cs linear (0.03)

83 AvoidUnneededCallsOnStringRule cs linear (0.03)

84 PreferEventsOverMethodsRule cs linear (0.03)

85 UseCorrectSuffixRule cs linear (0.03)

86 UseCorrectPrefixRule cs linear (0.03)

87 UseCorrectCasingRule cs linear (0.03)

88 AvoidRedundancyInTypeNameRule cs linear (0.03)

89 AvoidRedundancyInMethodNameRule cs linear (0.3)

90 ObsoleteMessagesShouldNotBeEmptyRule cs linear (0.03)

91 Do not place regions within elements cs linear (0.01)

92 Documentation headers must not contain blank lines cs linear (0.01)

93 Documentation lines must begin with single space cs linear (0.01)

94 Element documentation header must be preceded by blank line cs linear (0.01)

95

 Element documentation headers must not be followed by blank

line cs linear (0.01)

96 File may only contain a single class cs constant_resource (0.03)

97 Opening attribute brackets must be spaced correctly cs constant_resource (0.01)

98 Opening curly brackets must be spaced correctly cs constant_resource (0.01)

99 Opening curly brackets must not be followed by blank line cs constant_resource (0.01)

100 Opening curly brackets must not be preceded by blank line cs constant_resource (0.01)

101 Opening generic brackets must be spaced correctly cs constant_resource (0.01)

102 Opening parenthesis must be on declaration line cs constant_resource (0.01)

103 Opening parenthesis must be spaced correctly cs constant_resource (0.01)

104 Opening square brackets must be spaced correctly cs constant_resource (0.01)

J.H. Hegeman – Master Thesis – Unrestricted version 129

105 Parameter list must follow declaration cs linear (0.01)

106 Operator keyword must be followed by space cs linear (0.01)

107 Parameter must follow comma cs linear (0.01)

108 Parameter must not span multiple lines cs linear (0.01)

109 Parameters must be on same line or separate lines cs constant_resource (0.01)

110 Single line comment must be preceded by blank line cs constant_resource (0.01)

111 Single line comments must begin with single space cs constant_resource (0.01)

112 Single line comments must not be followed by blank line cs constant_resource (0.01)

113 Single line comments must not use documentation style slashes cs constant_resource (0.01)

114 Compound words should be cased correctly cs linear (0.01)

115 Identifiers should be cased correctly (FxCop10) cs linear (0.001)

116 Resource string compound words should be cased correctly cs linear (0.01)

117 Code must not contain multiple blank lines in a row cs linear (0.01)

118 Code must not contain multiple statements on one line cs linear (0.01)

119 Code must not contain multiple whitespace in a row cs linear (0.01)

120 Commas must be spaced correctly cs linear (0.01)

121 Field names must not contain underscore cs linear (0.01)

122 Remove unnecessary code cs linear (0.03)

123 Closing attribute brackets must be spaced correctly cs linear (0.01)

124 Closing curly brackets must be spaced correctly cs linear (0.01)

125 Element must begin with upper case letter cs linear (0.01)

126 Element must begin with lower case letter cs linear (0.01)

127 Negative signs must be spaced correctly cs linear (0.01)

128 Positive signs must be spaced correctly cs linear (0.01)

129 Symbols must be spaced correctly cs linear (0.01)

130 While do footer must not be preceded by blank line cs linear (0.01)

131 Protected must come before internal cs linear (0.01)

132 Increment decrement symbols must be spaced correctly cs linear (0.01)

133 Elements must be separated by blank line cs linear (0.01)

134 Const field names must begin with upper case letter cs linear (0.01)

135 Accessible fields must begin with upper case letter cs linear (0.01)

136 Identifiers should be spelled correctly (FxCop10) cs linear (0.01)

137 Identifiers should not contain underscores (FxCop10) cs linear (0.01)

138 Resource strings should be spelled correctly cs linear (0.01)

139 Use preferred terms cs linear (0.03)

140 All accessors must be multi line or single line cs linear (0.03)

141 Closing parenthesis must be on line of opening parenthesis cs linear (0.01)

142 Closing parenthesis must be on line of last parameter cs linear (0.01)

143 Closing generic brackets must be spaced correctly cs linear (0.01)

144 Closing parenthesis must be spaced correctly cs linear (0.01)

145 Closing square brackets must be spaced correctly cs linear (0.01)

146 Colons must be spaced correctly cs linear (0.01)

147 Dereference and access of symbols must be spaced correctly cs linear (0.01)

148 Keywords must be spaced correctly cs linear (0.01)

149 Member access symbols must be spaced correctly cs linear (0.01)

150 Semicolons must be spaced correctly cs linear (0.01)

151 Comma must be on same line as previous parameter cs linear (0.01)

152 Element must not be on single line cs linear (0.01)

153 Field names must not begin with underscore cs linear (0.01)

154 Using directives must be ordered alphabetically by namespace cs linear (0.01)

155

 Using alias directives must be ordered alphabetically by alias

name cs linear (0.01)

156 Field names must not use hungarian notation cs linear (0.01)

157 Closing curly brackets must not be preceded by blank line cs linear (0.01)

158 Chained statement blocks must not be preceded by blank line cs linear (0.01)

J.H. Hegeman – Master Thesis – Unrestricted version 130

159 Closing curly bracket must be followed by blank line cs linear (0.01)

160 Curly brackets for multi line statements must not share line cs linear (0.01)

161 Void return value must not be documented cs linear (0.01)

162 UseSingularNameInEnumsUnlessAreFlagsRule cs linear (0.03)

163 AvoidConstructorsInStaticTypesRule cs linear (0.03)

164 AvoidNonAlphanumericIdentifierRule cs linear (0.03)

165 DoNotPrefixEventsWithAfterOrBeforeRule cs linear (0.03)

166 DoNotUseEnumIsAssignableFromRule cs linear (0.03)

167 PreferTryParseRule cs linear (0.03)

168 CentralizePInvokesIntoNativeMethodsTypeRule cs linear (0.125)

169 Events should not have before or after prefix cs linear (0.03)

170 Statement must not use unnecessary parenthesis cs linear (0.03)

171 Statement must not be on single line cs linear (0.03)

172 Static elements must appear before instance elements cs linear (0.03)

173 Remove delegate parenthesis when possible cs linear (0.03)

174 Preprocessor keywords must not be preceded by space cs linear (0.01)

175 Nullable type symbols must not be preceded by space cs linear (0.01)

176 Block statements must not contain embedded comments cs linear (0.03)

177 Block statements must not contain embedded regions cs linear (0.03)

178

U
n

d
e

rsta
n

d
a

b
ility

Avoid Inline Conditionals java linear (0.03)

179 JavaNCSS java linear (0.375)

180 Missing Deprecated java linear (0.01)

181 Package Annotation java linear (0.03)

182 Uncommented Main java linear (0.125)

183 Abstract Class Without Abstract Method java linear (0.125)

184 Accessor Class Generation java linear (0.125)

185 Assignment In Operand java linear (0.03)

186 Avoid Multiple Unary Operators java linear (0.125)

187 Avoid Using Volatile java linear (0.125)

188 Avoid unnecessary comparisons in boolean expressions java linear (0.03)

189 Basic - Empty Initializer java linear (0.03)

190 Class with only private constructors should be final java linear (0.03)

191 Clone method must implement Cloneable java linear (0.03)

192 Collapsible If Statements java linear (0.03)

193 Confusing Ternary java linear (0.03)

194 Empty Finalizer java linear (0.03)

195 Empty Finally Block java linear (0.03)

196 Empty Static Initializer java linear (0.03)

197 Empty Switch Statements java linear (0.03)

198 Empty Synchronized Block java linear (0.03)

199 Empty Try Block java linear (0.03)

200 Empty While Stmt java linear (0.03)

201 Excessive Class Length java linear (0.125)

202 Excessive Method Length java linear (0.125)

203 Finalize Only Calls Super Finalize java linear (0.03)

204 Finalize Should Be Protected java linear (0.03)

205 Immutable Field java linear (0.03)

206 Local variable could be final java linear (0.03)

207 More Than One Logger java linear (0.03)

208 Ncss Constructor Count java linear (0.125)

209 Return empty array rather than null java linear (0.125)

210 Signature Declare Throws Exception java linear (0.125)

211 Simplify boolean returns java linear (0.125)

212 Singular Field java linear (0.03)

J.H. Hegeman – Master Thesis – Unrestricted version 131

213 Uncommented Empty Method java linear (0.03)

214 Uncommented Empty Constructor java linear (0.03)

215 Unconditional If Statement java linear (0.03)

216 Unused formal parameter java linear (0.03)

217 Write Tag java linear (0.03)

218 Suppress Warnings java linear (0.03)

219 At Least One Constructor java linear (0.03)

220 Avoid Final Local Variable java linear (0.125)

221 Avoid Instanceof Checks In Catch Clause java linear (0.125)

222 Empty If Stmt java linear (0.03)

223 Excessive Public Count java linear (0.125)

224 Idempotent Operations java linear (0.03)

225 Missing Static Method In Non Instantiatable Class java linear (0.125)

226 Ncss Method Count java linear (0.375)

227 Ncss Type Count java linear (0.375)

228 Simplify Conditional java linear (0.125)

229 Too many methods java linear (0.375)

230 Unnecessary Wrapper Object Creation java linear (0.125)

231 Unnecessary constructor java linear (0.03)

232 Unused Private Field java linear (0.03)

233 Unused local variable java linear (0.03)

234 Unused private method java linear (0.125)

235

 Bad practice - Class defines clone() but doesn't implement

Cloneable java linear (0.125)

236

 Bad practice - Class names shouldn't shadow simple name of

implemented interface java linear (0.03)

237

 Bad practice - Class names shouldn't shadow simple name of

superclass java linear (0.03)

238 Bad practice - Finalizer nulls fields java linear (0.03)

239 Bad practice - Finalizer only nulls fields java linear (0.03)

240

 Bad practice - Method doesn't override method in superclass due

to wrong package for parameter java linear (0.125)

241 Bad practice - Unchecked type in generic call java linear (0.125)

242
 Bad practice - Very confusing method names (but perhaps

intentional) java linear (0.125)

243

 Correctness - A known null value is checked to see if it is an

instance of a type java linear (0.03)

244

 Correctness - Covariant equals() method defined,

Object.equals(Object) inherited java linear (0.125)

245 Correctness - Covariant equals() method defined for enum java linear (0.125)

246 Correctness - Dead store of class literal java linear (0.125)

247 Correctness - Double assignment of field java linear (0.03)

248

 Correctness - Can't use reflection to check for presence of

annotation without runtime retention java linear (0.125)

249 Correctness - Method call passes null for nonnull parameter java linear (0.03)

250 Correctness - Method call passes null to a nonnull parameter java linear (0.03)

251 Correctness - Uncallable method defined in anonymous class java linear (0.125)

252 Correctness - Useless assignment in return statement java linear (0.03)

253 Correctness - Useless control flow to next line java linear (0.03)

254 Dodgy - Dead store of null to local variable java linear (0.125)

255 Dodgy - Load of known null value java linear (0.125)

256 AbstractTypesShouldNotHavePublicConstructorsRule cs linear (0.125)

257 PreferXmlAbstractionsRule cs linear (0.125)

258 AvoidUnusedParametersRule cs linear (0.03)

259 AvoidUnusedPrivateFieldsRule cs linear (0.03)

260 AvoidUncalledPrivateCodeRule cs linear (0.125)

261 ConsiderConvertingMethodToPropertyRule cs linear (0.125)

J.H. Hegeman – Master Thesis – Unrestricted version 132

262 DoNotUseReservedInEnumValueNamesRule cs linear (0.03)

263 RemoveUnusedLocalVariablesRule cs linear (0.03)

264 UseIsOperatorRule cs linear (0.03)

265 AvoidMethodWithUnusedGenericTypeRule cs linear (0.125)

266 Documentation text must not be empty cs linear (0.03)

267

 Destructor summary documentation must begin with standard

text cs linear (0.03)

268 Do not prefix calls with base unless local implementation exists cs linear (0.01)

269 Documentation must contain valid xml cs linear (0.03)

270 Documentation must meet character percentage cs linear (0.03)

271 Documentation text must contain whitespace cs linear (0.03)

272 Documentation text must meet minimum character length cs linear (0.03)

273 Element documentation must have summary cs linear (0.03)

274 Element documentation must have summary text cs linear (0.03)

275 Element documentation must not be copied and pasted cs linear (0.03)

276 Element documentation must not have default summary cs linear (0.03)

277 File may only contain a single namespace cs constant_resource (0.03)

278 File must have header cs constant_resource (0.03)

279 Comments must contain text cs linear (0.03)

280 Interface names must begin with i cs linear (0.01)

281 Element return value must be documented cs linear (0.03)

282 Elements must be documented cs linear (0.01)

283 Prefix local calls with this cs linear (0.03)

284 Constants must appear before fields cs linear (0.01)

285 Elements must appear in the correct order cs linear (0.01)

286 Elements must be ordered by access cs linear (0.01)

287 File header file name documentation must match file name cs linear (0.01)

288 Field names must begin with lower case letter cs linear (0.01)

289 Element parameter documentation must declare parameter name cs linear (0.01)

290

 Generic type parameter documentation must declare parameter

name cs linear (0.01)

291 Using directives must be placed within namespace cs linear (0.01)

292 Non private readonly fields must begin with upper case letter cs linear (0.01)

293 Code analysis suppression must have justification cs linear (0.03)

294 Code must not contain empty statements cs linear (0.03)

295 Debug assert must provide message text cs linear (0.03)

296 Debug fail must provide message text cs linear (0.03)

297 Element parameter documentation must have text cs linear (0.03)

298

 Generic type parameter documentation must match type

parameters cs linear (0.01)

299 Partial elements must be documented cs linear (0.03)

300 Element parameters must be documented cs linear (0.03)

301 Enumeration items must be documented cs linear (0.03)

302 Generic type parameters must be documented cs linear (0.03)

303 Generic type parameters must be documented partial class cs linear (0.03)

304 Element return value documentation must have text cs linear (0.03)

305 Generic type parameter documentation must have text cs linear (0.03)

306

 Element parameter documentation must match element

parameters cs linear (0.01)

307 Included documentation x path does not exist cs linear (0.125)

308 Partial element documentation must have summary cs linear (0.03)

309 Partial element documentation must have summary text cs linear (0.125)

310 Property summary documentation must match accessors cs linear (0.03)

311 Variable names must not be prefixed cs linear (0.01)

312 AvoidCodeDuplicatedInSameClassRule cs linear (0.125)

313 AvoidRefAndOutParametersRule cs linear (0.125)

J.H. Hegeman – Master Thesis – Unrestricted version 133

314 AvoidSmallNamespaceRule cs linear (0.125)

315 AvoidTypeInterfaceInconsistencyRule cs linear (0.125)

316 AvoidUninstantiatedInternalClassesRule cs linear (0.125)

317 DoNotExposeNestedGenericSignaturesRule cs linear (0.125)

318 ImplementICloneableCorrectlyRule cs linear (0.125)

319 ProvideTryParseAlternativeRule cs linear (0.125)

320 UsePluralNameInEnumFlagsRule cs linear (0.03)

321 UsePreferredTermsRule cs linear (0.01)

322 AttributeStringLiteralsShouldParseCorrectlyRule cs linear (0.03)

323 AvoidDeepInheritanceTreeRule cs linear (0.375)

324 AvoidDeepNamespaceHierarchyRule cs linear (0.125)

325 AvoidMultidimensionalIndexerRule cs linear (0.03)

326 AvoidPropertiesWithoutGetAccessorRule cs linear (0.03)

327 DeclareEventHandlersCorrectlyRule cs linear (0.125)

328 InternalNamespacesShouldNotExposeTypesRule cs linear (0.03)

329 MainShouldNotBePublicRule cs linear (0.03)

330 MissingAttributeUsageOnCustomAttributeRule cs linear (0.03)

331 OnlyUseDisposeForIDisposableTypesRule cs linear (0.03)

332 ParameterNamesShouldMatchOverriddenMethodRule cs linear (0.01)

333 PreferIntegerOrStringForIndexersRule cs linear (0.125)

334 PreferStringIsNullOrEmptyRule cs linear (0.01)

335 ReviewUselessControlFlowRule cs linear (0.03)

336 Using alias directives must be placed after other using directives cs linear (0.03)

337

 System using directives must be placed before other using

directives cs linear (0.03)

338 Split parameters must start on line after declaration cs linear (0.03)

339 Query clause must follow previous clause cs linear (0.03)

340 Query clauses must be on separate lines or all on one line cs linear (0.03)

341 Query clauses spanning multiple lines must begin on own line cs linear (0.03)

342

 Query clause must begin on new line when previous clause spans

multiple lines cs linear (0.03)

343 Property accessors must follow order cs linear (0.03)

344
 Code must not contain space after new keyword in implicitly

typed array allocation cs linear (0.03)

345 Conditional expressions must declare precedence cs linear (0.03)

346 Declaration keywords must follow order cs linear (0.03)

347 Curly brackets must not be omitted cs linear (0.03)

348

 Constructor summary documentation must begin with standard

text cs linear (0.03)

349 Event accessors must follow order cs linear (0.03)

350

 Property summary documentation must omit set accessor with

restricted access cs linear (0.03)

351 Use built in type alias cs linear (0.03)

352 Access modifier must be declared cs linear (0.03)

353 Arithmetic expressions must declare precedence cs linear (0.03)

354 AvoidUnnecessarySpecializationRule cs linear (0.03)

355 ProvideAlternativeNamesForOperatorOverloadsRule cs linear (0.03)

356 RemoveDependenceOnObsoleteCodeRule cs linear (0.125)

357 AvoidDeclaringCustomDelegatesRule cs linear (0.125)

358

C
h

a
n

g
e

a
b

ility

 A
rch

ite
ctu

re
 re

la
te

d

Visibility Modifier java linear (0.125)

359 Loose coupling java linear (0.125)

360 Useless Overriding Method java linear (0.03)

361 Coupling between objects java linear (1)

362 Class Data Abstraction Coupling java linear (1)

363 Class Fan Out Complexity java linear (1)

364 Design For Extension java linear (0.125)

J.H. Hegeman – Master Thesis – Unrestricted version 134

365 Nested Try Depth java linear (0.03)

366 Abstract class without any methods java linear (0.03)

367 Coupling - excessive imports java linear (1)

368 Too Many Fields java linear (0.125)

369 Avoid Protected Field In Final Class java linear (0.125)

370 Default Package java linear (0.125)

371 Use Array List Instead Of Vector java linear (0.125)

372 Bad practice - Fields of immutable classes should be final java linear (0.03)

373 Bad practice - Superclass uses subclass during initialization java linear (0.125)

374 Correctness - Class defines field that masks a superclass field java linear (0.125)

375

 Dodgy - Ambiguous invocation of either an inherited or outer

method java linear (0.125)

376 DoNotDeclareProtectedMembersInSealedTypeRule cs linear (0.125)

377 DoNotDeclareVirtualMethodsInSealedTypeRule cs linear (0.125)

378 Do not declare visible instance fields cs linear (0.125)

379 Members should not expose certain concrete types cs linear (0.03)

380 AvoidSpeculativeGeneralityRule cs linear (0.375)

381 TypesShouldBeInsideNamespacesRule cs linear (0.03)

382 ConsiderAddingInterfaceRule cs linear (0.03)

383 PreferGenericsOverRefObjectRule cs linear (0.125)

384 Avoid out parameters cs linear (0.03)

385

 Bad practice - Class implements Cloneable but does not define or

use clone method java linear (0.125)

386

 Bad practice - Class is not derived from an Exception, even though

it is named as such java linear (0.03)

387 Bad practice - Confusing method names java linear (0.03)

388 Bad practice - Empty finalizer should be deleted java linear (0.125)

389 Bad practice - Finalizer does nothing but call superclass finalizer java linear (0.03)

390 Bad practice - serialVersionUID isn't long java linear (0.03)

391 Bad practice - serialVersionUID isn't static java linear (0.03)

392 Boolean Expression Complexity java linear (0.03)

393 Correctness - Call to equals() with null argument java linear (0.125)

394 Correctness - Field only ever set to null java linear (0.125)

395 Correctness - Method call passes null for nonnull parameter java linear (0.03)

396 Correctness - Nullcheck of value previously dereferenced java linear (0.125)

397

 Correctness - Unnecessary type check done using instanceof

operator java linear (0.03)

398

 Correctness - Unneeded use of currentThread() call, to call

interrupted() java linear (0.03)

399 Correctness - Unwritten field java linear (0.03)

400 Dodgy - Class implements same interface as superclass java linear (0.03)

401 Dodgy - Class is final but declares protected field java linear (0.03)

402 Dodgy - Dead store to local variable java linear (0.125)

403 Dodgy - Exception is caught when Exception is not thrown java linear (0.125)

404 Dodgy - Method checks to see if result of String.indexOf is positive java linear (0.125)

405 Dodgy - Redundant comparison of non-null value to null java linear (0.03)

406 Dodgy - Redundant comparison of two null values java linear (0.03)

407 Dodgy - Redundant nullcheck of value known to be non-null java linear (0.03)

408 Dodgy - Redundant nullcheck of value known to be null java linear (0.03)

409 Dodgy - Unchecked/unconfirmed cast java linear (0.03)

410 Executable Statement Count java linear (0.125)

411 File Length java linear (0.375)

412 Final Class java linear (0.01)

413 Javadoc Type java linear (0.01)

414 Javadoc Style java linear (0.01)

415 Javadoc Package java linear (0.01)

J.H. Hegeman – Master Thesis – Unrestricted version 135

416 Javadoc Method java linear (0.01)

417 Hide Utility Class Constructor java linear (0.03)

418 Unnecessary Parentheses java linear (0.03)

419 Simplify Boolean Return java linear (0.125)

420 Redundant Throws java linear (0.125)

421 Simplify Boolean Expression java linear (0.125)

422 Performance - Unread field: should this field be static? java linear (0.03)

423 Performance - Unused field java linear (0.03)

424 Performance - Unread field java linear (0.03)

425 Performance - Private method is never called java linear (0.03)

426 Package Declaration java linear (0.03)

427 Method Length java linear (0.125)

428 Javadoc Variable java linear (0.01)

429 Bad practice - serialVersionUID isn't final java linear (0.03)

430

 Bad practice - Needless instantiation of class that only supplies

static methods java linear (0.03)

431 Abstract types should not have constructors (FxCop10) cs linear (0.01)

432 Assemblies should have valid strong names cs linear (0.03)

433 Attribute string literals should parse correctly (FxCop10) cs linear (0.03)

434 Avoid excessive locals cs linear (0.03)

435 Avoid excessive parameters on generic types cs linear (0.03)

436 Avoid namespaces with few types cs linear (0.03)

437 Avoid non-public fields in COM visible value types (FxCop10) cs linear (0.03)

438 Avoid uncalled private code (FxCop10) cs linear (0.125)

439 Avoid unused private fields (FxCop10) cs linear (0.03)

440 Collections should implement generic interface cs linear (0.03)

441 Do not declare protected members in sealed types cs linear (0.03)

442 Do not declare static members on generic types cs linear (0.03)

443 Do not declare virtual members in sealed types cs linear (0.03)

444 Do not hide base class methods cs linear (0.03)

445 Do not name enum values 'Reserved' cs linear (0.03)

446 Do not nest generic types in member signatures cs linear (0.375)

447 Do not pass types by reference cs linear (0.125)

448 Do not prefix enum values with type name cs linear (0.01)

449 Enumerators should be strongly typed cs linear (0.03)

450 Flags enums should have plural names cs linear (0.03)

451 Generic methods should provide type parameter cs linear (0.03)

452 Identifiers should differ by more than case cs linear (0.01)

453 Identifiers should have correct prefix cs linear (0.01)

454 Identifiers should have correct suffix cs linear (0.01)

455 Identifiers should not contain type names cs linear (0.01)

456 Identifiers should not have incorrect prefix cs linear (0.01)

457 Identifiers should not have incorrect suffix cs linear (0.01)

458 Identifiers should not match keywords cs linear (0.01)

459 Indexers should not be multidimensional cs linear (0.125)

460 Mark all non-serializable fields (FxCop10) cs linear (0.03)

461 Mark attributes with AttributeUsageAttribute (FxCop10) cs linear (0.125)

462 Mark boolean P/Invoke arguments with MarshalAs (FxCop10) cs linear (0.03)

463 Members should differ by more than return type (FxCop10) cs linear (0.125)

464 Nested types should not be visible cs linear (0.03)

465 Normalize strings to uppercase cs linear (0.01)

466 Only FlagsAttribute enums should have plural names cs linear (0.03)

467 Parameter names should match base declaration cs linear (0.03)

468 Parameter names should not match member names cs linear (0.03)

469 Property names should not match get methods cs linear (0.03)

J.H. Hegeman – Master Thesis – Unrestricted version 136

470 Provide ObsoleteAttribute message cs linear (0.125)

471 Remove empty finalizers cs linear (0.125)

472 Remove unused locals (FxCop10) cs linear (0.03)

473 Review unused parameters (FxCop10) cs linear (0.125)

474 Use properties where appropriate cs linear (0.125)

475 Use params for variable arguments (FxCop10) cs linear (0.03)

476 Use integral or string argument for indexers cs linear (0.125)

477 Use generics where appropriate cs linear (0.375)

478 Use events where appropriate cs linear (1)

479 Types should not extend certain base types cs linear (0.03)

480 Type names should not match namespaces cs linear (0.03)

481 Static holder types should not have constructors cs linear (0.03)

482 Specify StringComparison cs linear (0.03)

483

 D
a

ta
 re

la
te

d

Magic Number java linear (0.03)

484 Interface Is Type java linear (0.03)

485 Multiple String Literals java linear (0.125)

486 Avoid Constants Interface java linear (0.125)

487 Avoid empty interfaces cs linear (0.125)

488 AvoidEmptyInterfaceRule cs linear (0.125)

489 AvoidVisibleConstantFieldRule cs linear (0.03)

490 AvoidMessageChainsRule cs linear (0.125)

491

Lo
g

ic re
la

te
d

Need Braces java linear (0.03)

492 Default Comes Last java linear (0.03)

493 Nested If Depth java linear (0.125)

494 Return Count java linear (0.125)

495 Strict Duplicate Code java linear (0.375)

496 Throws Count java linear (0.125)

497 Avoid Deeply Nested If Stmts java linear (0.125)

498 Avoid Duplicate Literals java linear (0.125)

499 If Stmts Must Use Braces java linear (0.03)

500 If Else Stmts Must Use Braces java linear (0.03)

501 Only One Return java linear (0.125)

502 Replace Hashtable With Map java linear (0.03)

503 Replace Vector With List java linear (0.03)

504 Switch Density java linear (0.125)

505 AvoidLackOfCohesionOfMethodsRule cs linear (0.375)

506

R
e

lia
b

ility

A
rch

ite
ctu

re
 re

la
te

d

Avoid Star Import java constant_resource (0.01)

507 Illegal Import java linear (0.125)

508 Avoid Static Import java linear (0.03)

509 Covariant Equals java linear (0.125)

510 Missing Override java linear (0.01)

511 Avoid Calling Finalize java linear (0.125)

512 Avoid StringBuffer field java linear (0.125)

513 Bean Members Should Serialize java linear (0.03)

514 Constructor Calls Overridable Method java linear (0.375)

515 Empty Method In Abstract Class Should Be Abstract java linear (0.125)

516 Missing Serial Version UID java linear (0.03)

517

 Bad practice - Class is Externalizable but doesn't define a void

constructor java linear (0.125)

518

 Bad practice - Class is Serializable but its superclass doesn't define

a void constructor java linear (0.125)

519 Bad practice - Non-serializable class has a serializable inner class java linear (0.125)

520

 Bad practice - Non-serializable value stored into instance field of a

serializable class java linear (0.125)

J.H. Hegeman – Master Thesis – Unrestricted version 137

521 Bad practice - Serializable inner class java linear (0.125)

522 Bad practice - Store of non serializable object into HttpSession java linear (0.125)

523

 Bad practice - Usage of GetResource may be unsafe if class is

extended java linear (0.125)

524 Bad practice - clone method does not call super.clone() java linear (0.125)

525 Bad practice - equals method fails for subtypes java linear (0.125)

526 Class defines equal(Object); should it be equals(Object)? java linear (0.125)

527 Class defines hashcode(); should it be hashCode()? java linear (0.125)

528 Class defines tostring(); should it be toString()? java linear (0.125)

529 Correctness - Apparent method/constructor confusion java linear (0.125)

530

 Correctness - Call to equals() comparing unrelated class and

interface java linear (0.125)

531 Correctness - Call to equals() comparing different types java linear (0.125)

532 Correctness - Call to equals() comparing different interface types java linear (0.125)

533

 Correctness - Class overrides a method implemented in super

class Adapter wrongly java linear (0.125)

534

 Correctness - Creation of ScheduledThreadPoolExecutor with zero

core threads java linear (0.125)

535

 Correctness - Deadly embrace of non-static inner class and thread

local java linear (0.125)

536

 Correctness - Method doesn't override method in superclass due

to wrong package for parameter java linear (0.125)

537

 Correctness - Method must be private in order for serialization to

work java linear (0.125)

538

 Correctness - No relationship between generic parameter and

method argument java linear (0.125)

539

 Correctness - The readResolve method must not be declared as a

static method. java linear (0.03)

540

 Correctness - Use of class without a hashCode() method in a

hashed data structure java linear (0.125)

541

 Correctness - equals() method defined that doesn't override

Object.equals(Object) java linear (0.125)

542

 Correctness - equals() method defined that doesn't override

equals(Object) java linear (0.125)

543 Dodgy - Class doesn't override equals in superclass java linear (0.125)

544 Dodgy - Initialization circularity java linear (0.125)

545 Dodgy - Thread passed where Runnable expected java linear (0.125)

546 UseCorrectSignatureForSerializationMethodsRule cs linear (0.125)

547 MissingSerializationConstructorRule cs linear (0.125)

548 MissingSerializableAttributeOnISerializableTypeRule cs linear (0.125)

549 MarkEnumerationsAsSerializableRule cs linear (0.125)

550 MarkAllNonSerializableFieldsRule cs linear (0.125)

551 ImplementISerializableCorrectlyRule cs linear (0.125)

552 DeserializeOptionalFieldRule cs linear (0.125)

553 CallBaseMethodsOnISerializableTypesRule cs linear (0.125)

554 DoNotForgetNotImplementedMethodsRule cs linear (0.125)

555 Do not call overridable methods in constructors (FxCop10) cs linear (0.375)

556 Avoid static members in COM visible types (FxCop10) cs linear (0.375)

557 Collection properties should be read only (FxCop10) cs linear (0.125)

558 Do not decrease inherited member visibility (FxCop10) cs linear (0.03)

559 Do not expose generic lists cs linear (0.125)

560 Do not overload operator equals on reference types cs linear (0.03)

561 Finalizers should call base class finalizer (FxCop10) cs linear (0.125)

562 Do not mark enums with FlagsAttribute (FxCop10) cs linear (0.03)

563 Do not mark serviced components with WebMethod (FxCop10) cs linear (0.125)

564 Implement IDisposable correctly cs linear (0.125)

565 Non-constant fields should not be visible (FxCop10) cs linear (0.375)

566 Static holder types should be sealed cs linear (0.03)

J.H. Hegeman – Master Thesis – Unrestricted version 138

567 ConsiderUsingStopwatchRule cs linear (0.03)

568 ConstructorShouldNotCallVirtualMethodsRule cs linear (0.125)

569 EnsureSymmetryForOverloadedOperatorsRule cs linear (0.125)

570 Do not ship unreleased resource formats (FxCop10) cs linear (0.125)

571 Implement ISerializable correctly (FxCop10) cs linear (0.125)

572 Implement serialization methods correctly (FxCop10) cs linear (0.125)

573 Mark Windows Forms entry points with STAThread (FxCop10) cs linear (0.125)

574 Avoid duplicate accelerators cs linear (0.03)

575 Avoid overloads in COM visible interfaces (FxCop10) cs linear (0.125)

576 COM registration methods should not be visible (FxCop10) cs linear (0.03)

577 COM visible type base types should be COM visible (FxCop10) cs linear (0.125)

578 COM visible types should be creatable (FxCop10) cs linear (0.03)

579 Consider passing base types as parameters cs linear (0.03)

580 Declare types in namespaces cs linear (0.03)

581 Mark enums with FlagsAttribute cs linear (0.03)

582 Fields must be private cs linear (0.03)

583 ConsiderUsingStaticTypeRule cs linear (0.125)

584 ImplementGenericCollectionInterfacesRule cs linear (0.125)

585 ImplementIComparableCorrectlyRule cs linear (0.125)

586 MarkAssemblyWithCLSCompliantRule cs linear (0.125)

587 MarkAssemblyWithComVisibleRule cs linear (0.125)

588 MethodCanBeMadeStaticRule cs linear (0.125)

589 PreferSafeHandleRule cs linear (0.125)

590 StaticConstructorsShouldBePrivateRule cs linear (0.125)

591 UseGenericEventHandlerRule cs linear (0.125)

592 ICollection implementations have strongly typed members cs linear (0.125)

593 Operators should have symmetrical overloads (FxCop10) cs linear (0.125)

594 AttributeArgumentsShouldHaveAccessorsRule cs linear (0.03)

595 AvoidExtensionMethodOnSystemObjectRule cs linear (0.125)

596 ProvideCorrectRegexPatternRule cs linear (0.375)

597 ReviewSelfAssignmentRule cs linear (0.03)

598 Provide deserialization methods for optional fields (FxCop10) cs linear (0.375)

599 Types that own disposable fields should be disposable cs linear (0.125)

600 Types that own native resources should be disposable cs linear (0.125)

601 Use generic event handler instances cs linear (0.125)

602 Specify IFormatProvider cs linear (0.125)

603 Mark ISerializable types with SerializableAttribute (FxCop10) cs linear (0.125)

604 Mark ComSource interfaces as IDispatch (FxCop10) cs linear (0.125)

605 FinalizersShouldCallBaseClassFinalizerRule cs linear (0.125)

606 MarshalBooleansInPInvokeDeclarationsRule cs linear (0.125)

607 MarshalStringsInPInvokeDeclarationsRule cs linear (0.125)

608 UseNoInliningWithGetCallingAssemblyRule cs linear (0.03)

609 GtkSharpExecutableTargetRule cs linear (0.03)

610

D
a

ta
 re

la
te

d

Hidden Field java linear (0.03)

611 Illegal Instantiation java linear (0.03)

612 Useless Operation On Immutable java linear (0.15)

613 Explicit Initialization java linear (0.03)

614 Final Local Variable java linear (0.03)

615 Final Parameters java linear (0.03)

616 Missing Constructor java linear (0.03)

617 Parameter Assignment java linear (0.03)

618 Assignment To Non Final Static java linear (0.03)

619 Avoid Decimal Literals In Big Decimal Constructor java linear (0.03)

620 Avoid Reassigning Parameters java linear (0.125)

J.H. Hegeman – Master Thesis – Unrestricted version 139

621 Method Argument Could Be Final java linear (0.03)

622 Null Assignment java linear (0.03)

623 Static EJB Field Should Be Final java linear (0.03)

624 Suspicious Octal Escape java linear (0.03)

625

 Multithreaded correctness - A volatile reference to an array

doesn't treat the array elements as volatile java linear (0.125)

626 Non-transient non-serializable instance field in serializable class java linear (0.125)

627

 Bad practice - Equals method should not assume anything about

the type of its argument java linear (0.125)

628 Bad practice - Explicit invocation of finalizer java linear (0.125)

629

 Bad practice - Static initializer creates instance before all static

final fields assigned java linear (0.125)

630 Bad practice - Transient field that isn't set by deserialization. java linear (0.125)

631 Correctness - "." used for regular expression java linear (0.125)

632 Correctness - Field not initialized in constructor java linear (0.125)

633 Correctness - Method defines a variable that obscures a field java linear (0.03)

634 Correctness - Method does not check for null argument java linear (0.125)

635 Correctness - Method may return null, but is declared @NonNull java linear (0.125)

636

 Correctness - Method performs math using floating point

precision java linear (0.125)

637

 Correctness - Non-virtual method call passes null for nonnull

parameter java linear (0.125)

638 Correctness - Store of null value into field annotated NonNull java linear (0.125)

639 Correctness - Uninitialized read of field in constructor java linear (0.03)

640

 Correctness - Uninitialized read of field method called from

constructor of superclass java linear (0.03)

641 Dodgy - Class extends Servlet class and uses instance variables java linear (0.125)

642

 Dodgy - Class extends Struts Action class and uses instance

variables java linear (0.125)

643 Dodgy - Parameter must be nonnull but is marked as nullable java linear (0.125)

644 DoNotRecurseInEqualityRule cs linear (0.125)

645 AvoidVisibleFieldsRule cs linear (0.03)

646 AvoidVisibleNestedTypesRule cs linear (0.03)

647 AvoidFloatingPointEqualityRule cs linear (0.03)

648 DoNotCompareWithNaNRule cs linear (0.125)

649 Do not hardcode locale specific strings cs linear (0.125)

650 Enums should have zero value cs linear (0.03)

651 Test for NaN correctly (FxCop10) cs linear (0.03)

652 Specify CultureInfo (FxCop10) cs linear (0.125)

653 Set locale for data types cs linear (0.125)

654 Mark assemblies with AssemblyVersionAttribute (FxCop10) cs linear (0.03)

655 AvoidAssemblyVersionMismatchRule cs linear (0.125)

656 EnumsShouldDefineAZeroValueRule cs linear (0.03)

657 EnumsShouldUseInt32Rule cs linear (0.125)

658 FlagsShouldNotDefineAZeroValueRule cs linear (0.03)

659 Define accessors for attribute arguments cs linear (0.03)

660 Do not ignore method results (FxCop10) cs linear (0.125)

661 Interface methods should be callable by child types cs linear (0.125)

662 Avoid Int64 arguments for Visual Basic 6 clients (FxCop10) cs linear (0.03)

663 PreferParamsArrayForVariableArgumentsRule cs linear (0.125)

664 Include node does not contain valid file and path cs linear (0.125)

665 DoNotRoundIntegersRule cs linear (0.03)

666 MarkAssemblyWithAssemblyVersionRule cs linear (0.125)

667 Operations should not overflow (FxCop10) cs linear (0.03)

668 Override methods on comparable types cs linear (0.125)

669 AvoidCodeDuplicatedInSiblingClassesRule cs linear (0.125)

J.H. Hegeman – Master Thesis – Unrestricted version 140

670 AvoidReturningArraysOnPropertiesRule cs linear (0.125)

671 ProvideCorrectArgumentsToFormattingMethodsRule cs linear (0.125)

672 ReviewDoubleAssignmentRule cs linear (0.125)

673 ReviewInconsistentIdentityRule cs linear (0.375)

674 ReviewUseOfInt64BitsToDoubleRule cs linear (0.125)

675 Use managed equivalents of Win32 API (FxCop10) cs linear (0.125)

676 UseCorrectDisposeSignaturesRule cs linear (0.125)

677

E
x

ce
p

tio
n

 h
a

n
d

lin
g

Mutable Exception java linear (0.03)

678 Avoid Catching NPE java linear (0.125)

679 Avoid Catching Throwable java linear (0.125)

680 Avoid Rethrowing Exception java linear (0.125)

681 Strict Exception - Avoid throwing new instance of same exception java linear (0.03)

682 Strict Exception - Do not throw exception in finally java linear (0.03)

683 Use Correct Exception Logging java linear (0.03)

684 Avoid Print Stack Trace java linear (0.03)

685 Avoid Throwing Null Pointer Exception java linear (0.125)

686 Avoid Throwing Raw Exception Types java linear (0.125)

687 Bad practice - Method may fail to close stream on exception java linear (0.125)

688 Bad practice - Method might ignore exception java linear (0.125)

689 Correctness - Exception created and dropped rather than thrown java linear (0.125)

690 AvoidArgumentExceptionDefaultConstructorRule cs linear (0.125)

691 MissingExceptionConstructorsRule cs linear (0.125)

692 InstantiateArgumentExceptionCorrectlyRule cs linear (0.125)

693 ExceptionShouldBeVisibleRule cs linear (0.125)

694 DoNotThrowReservedExceptionRule cs linear (0.125)

695 DoNotSwallowErrorsCatchingNonSpecificExceptionsRule cs linear (0.125)

696 DelegatesPassedToNativeCodeMustIncludeExceptionHandlingRule cs linear (0.125)

697 CheckNewExceptionWithoutThrowingRule cs linear (0.125)

698 AvoidThrowingBasicExceptionsRule cs linear (0.125)

699 DoNotDestroyStackTraceRule cs linear (0.125)

700 DoNotThrowInUnexpectedLocationRule cs linear (0.125)

701 DoNotUseLockedRegionOutsideMethodRule cs linear (0.125)

702
 F
a

u
lt to

le
ra

n
ce

Empty Catch Block java linear (0.125)

703 Misplaced Null Check java linear (0.03)

704 Equals Avoid Null java linear (0.03)

705 Do Not Extend Java Lang Error java linear (0.125)

706 PreferEmptyInstanceOverNullRule cs linear (0.03)

707 GetLastErrorMustBeCalledRightAfterPInvokeRule cs linear (0.03)

708

In
stru

ctio
n

 re
la

te
d

Typecast Paren Pad java constant_resource (0.01)

709 Equals Hash Code java linear (0.125)

710 Inner Assignment java linear (0.03)

711 Class Cast Exception With To Array java linear (0.03)

712 Equals Null java linear (0.125)

713 Bad Comparison java linear (0.03)

714 No Clone java linear (0.125)

715 String Literal Equality java linear (0.03)

716 Compare Objects With Equals java linear (0.03)

717 Empty Statement Not In Loop java linear (0.03)

718 Finalize Does Not Call Super Finalize java linear (0.03)

719 Finalize Overloaded java linear (0.15)

720 Override both equals and hashcode java linear (0.125)

721 Proper clone implementation java linear (0.15)

722 String Buffer Instantiation With Char java linear (0.03)

723 Use Equals To Compare Strings java linear (0.03)

J.H. Hegeman – Master Thesis – Unrestricted version 141

724 Use Proper Class Loader java linear (0.375)

725 Empty Statement java linear (0.01)

726 Empty For Iterator Pad java linear (0.01)

727 Empty For Initializer Pad java linear (0.01)

728

 Multithreaded correctness - A thread was created using the

default empty run method java linear (0.125)

729

 Performance - Explicit garbage collection; extremely dubious

except in benchmarking code java linear (0.03)

730

 Bad practice - Abstract class defines covariant compareTo()

method java linear (0.125)

731 Bad practice - Abstract class defines covariant equals() method java linear (0.125)

732 Bad practice - Check for sign of bitwise operation java linear (0.125)

733

 Bad practice - Class defines compareTo(...) and uses

Object.equals() java linear (0.125)

734 Bad practice - Class defines equals() and uses Object.hashCode() java linear (0.125)

735 Bad practice - Class defines equals() but not hashCode() java linear (0.125)

736 Bad practice - Class defines hashCode() and uses Object.equals() java linear (0.125)

737 Bad practice - Class defines hashCode() but not equals() java linear (0.125)

738 Bad practice - Class inherits equals() and uses Object.hashCode() java linear (0.125)

739 Bad practice - Clone method may return null java linear (0.125)

740 Bad practice - Comparator doesn't implement Serializable java linear (0.125)

741 Bad practice - Comparison of String objects using == or != java linear (0.125)

742 Bad practice - Comparison of String parameter using == or != java linear (0.125)

743 Bad practice - Equals checks for noncompatible operand java linear (0.125)

744 Bad practice - Method ignores results of InputStream.read() java linear (0.125)

745 Bad practice - Method ignores results of InputStream.skip() java linear (0.125)

746 Bad practice - Suspicious reference comparison java linear (0.125)

747

 Bad practice - The readResolve method must be declared with a

return type of Object. java linear (0.125)

748

 Correctness - Bad attempt to compute absolute value of signed

32-bit hashcode java linear (0.125)

749

 Correctness - Bad attempt to compute absolute value of signed

32-bit random integer java linear (0.125)

750
 Correctness - Bad comparison of nonnegative value with negative

constant java linear (0.125)

751 Correctness - Bad comparison of signed byte java linear (0.125)

752 Correctness - Bad constant value for month java linear (0.125)

753 Correctness - Collections should not contain themselves java linear (0.125)

754 Correctness - Don't use removeAll to clear a collection java linear (0.125)

755

 Correctness - Doomed attempt to append to an object output

stream java linear (0.125)

756 Correctness - Doomed test for equality to NaN java linear (0.125)

757 Correctness - Array formatted in useless way using format string java linear (0.03)

758 Correctness - Double.longBitsToDouble invoked on an int java linear (0.125)

759

 Correctness - Format string placeholder incompatible with passed

argument java linear (0.125)

760 Correctness - Format string references missing argument java linear (0.125)

761 Correctness - Illegal format string java linear (0.125)

762 Correctness - Impossible cast java linear (0.03)

763 Correctness - Impossible downcast java linear (0.03)

764 Correctness - Impossible downcast of toArray() result java linear (0.03)

765 Correctness - Incompatible bit masks java linear (0.125)

766 Correctness - Incompatible bit masks java linear (0.125)

767 Correctness - Integer multiply of result of integer remainder java linear (0.125)

768 Correctness - Integer remainder modulo 1 java linear (0.125)

769 Correctness - Integer shift by an amount not in the range 0..31 java linear (0.125)

770 Correctness - Invalid syntax for regular expression java linear (0.125)

J.H. Hegeman – Master Thesis – Unrestricted version 142

771

 Correctness - Invocation of equals() on an array, which is

equivalent to == java linear (0.125)

772 Correctness - Invocation of hashCode on an array java linear (0.03)

773 Correctness - Invocation of toString on an array java linear (0.03)

774 Correctness - Invocation of toString on an array java linear (0.03)

775

 Correctness - JUnit assertion in run method will not be noticed by

JUnit java linear (0.03)

776

 Correctness - MessageFormat supplied where printf style format

expected java linear (0.03)

777

 Correctness - Method assigns boolean literal in boolean

expression java linear (0.03)

778

 Correctness - Method attempts to access a prepared statement

parameter with index 0 java linear (0.03)

779

 Correctness - Method attempts to access a result set field with

index 0 java linear (0.03)

780 Correctness - Method ignores return value java linear (0.125)

781 Correctness - Method ignores return value java linear (0.125)

782

 Correctness - More arguments are passed that are actually used in

the format string java linear (0.125)

783 Correctness - No previous argument for format string java linear (0.125)

784 Correctness - Overwritten increment java linear (0.125)

785 Correctness - Random value from 0 to 1 is coerced to the integer 0 java linear (0.125)

786 Correctness - Suspicious reference comparison of Boolean values java linear (0.125)

787 Correctness - Suspicious reference comparison to constant java linear (0.125)

788

 Correctness - The type of a supplied argument doesn't match

format specifier java linear (0.125)

789 Correctness - Using pointer equality to compare different types java linear (0.125)

790 Correctness - Vacuous call to collections java linear (0.125)

791 Correctness - close() invoked on a value that is always null java linear (0.125)

792 Correctness - equals() used to compare array and nonarray java linear (0.125)

793 Correctness - equals(...) used to compare incompatible arrays java linear (0.125)

794

 Correctness - int value cast to float and then passed to

Math.round java linear (0.125)

795

 Correctness - int value cast to double and then passed to

Math.ceil java linear (0.125)

796 Dodgy - Call to unsupported method java linear (0.125)

797 Dodgy - Check for oddness that won't work for negative numbers java linear (0.125)

798 Dodgy - Consider returning a zero length array rather than null java linear (0.125)

799

 Dodgy - Non-Boolean argument formatted using %b format

specifier java linear (0.125)

800 Dodgy - Non serializable object written to ObjectOutput java linear (0.125)

801 Dodgy - Questionable use of non-short-circuit logic java linear (0.125)

802 Dodgy - Questionable cast to concrete collection java linear (0.125)

803 Dodgy - Questionable cast to abstract collection java linear (0.125)

804 Dodgy - Remainder of hashCode could be negative java linear (0.125)

805 Dodgy - Result of integer multiplication cast to long java linear (0.125)

806 Dodgy - Test for floating point equality java linear (0.125)

807 Dodgy - int division result cast to double or float java linear (0.125)

808 OverrideEqualsMethodRule cs linear (0.125)

809 OperatorEqualsShouldBeOverloadedRule cs linear (0.125)

810 AvoidCallingProblematicMethodsRule cs linear (0.125)

811 CallingEqualsWithNullArgRule cs linear (0.125)

812 ImplementEqualsAndGetHashCodeInPairRule cs linear (0.125)

813 Initialize value type static fields inline (FxCop10) cs linear (0.125)

814 Operator overloads have named alternates (FxCop10) cs linear (0.15)

815 DoNotUseGetInterfaceToCheckAssignabilityRule cs linear (0.03)

816 Do not use AutoDual ClassInterfaceType (FxCop10) cs linear (0.125)

J.H. Hegeman – Master Thesis – Unrestricted version 143

817 Implement serialization constructors (FxCop10) cs linear (0.03)

818 Call GetLastError immediately after P/Invoke (FxCop10) cs linear (0.03)

819 Call base class methods on ISerializable types (FxCop10) cs linear (0.03)

820 Declare P/Invokes correctly (FxCop10) cs linear (0.125)

821 Declare event handlers correctly cs linear (0.125)

822 Use ordinal StringComparison cs linear (0.03)

823 Overload operator equals on overloading add and subtract cs linear (0.125)

824

 Overload operator equals on overriding ValueType.Equals

(FxCop10) cs linear (0.125)

825 Override Equals on overloading operator equals (FxCop10) cs linear (0.125)

826 Override GetHashCode on overriding Equals (FxCop10) cs linear (0.125)

827 ProtectCallToEventDelegatesRule cs linear (0.03)

828 P/Invoke entry points should exist (FxCop10) cs linear (0.375)

829 ArrayFieldsShouldNotBeReadOnlyRule cs linear (0.03)

830

Lo
g

ic re
la

te
d

Empty Block java linear (0.03)

831 Missing Switch Default java linear (0.03)

832 Modified Control Variable java linear (0.125)

833 Jumbled Incrementer java linear (0.125)

834 Fall Through java linear (0.125)

835 No Finalizer java linear (0.125)

836 Comment pattern matcher java linear (0.125)

837 Android - call super first java linear (0.03)

838 Android - call super last java linear (0.03)

839 Broken Null Check java linear (0.03)

840 Call Super In Constructor java linear (0.03)

841 Check ResultSet java linear (0.03)

842 Dataflow Anomaly Analysis java linear (0.375)

843 Default label not last in switch statement java linear (0.125)

844 Missing Break In Switch java linear (0.03)

845 Non Case Label In Switch Statement java linear (0.125)

846 Position Literals First In Comparisons java linear (0.03)

847 Return From Finally Block java linear (0.125)

848 Switch statements should have default java linear (0.125)

849 Non Static Initializer java linear (0.125)

850 Switch statement found where default case is missing java linear (0.125)

851

 Switch statement found where one case falls through to the next

case java linear (0.125)

852 Bad practice - Creates an empty jar file entry java linear (0.125)

853 Bad practice - Creates an empty zip file entry java linear (0.125)

854 Bad practice - Covariant equals() method defined java linear (0.125)

855 Bad practice - Covariant compareTo() method defined java linear (0.125)

856 Bad practice - Finalizer does not call superclass finalizer java linear (0.03)

857 Bad practice - Finalizer nullifies superclass finalizer java linear (0.03)

858

 Bad practice - Iterator next() method can't throw

NoSuchElementException java linear (0.125)

859 Bad practice - Method ignores exceptional return value java linear (0.125)

860 Bad practice - Method may fail to close database resource java linear (0.125)

861 Bad practice - Method may fail to close stream java linear (0.125)

862

 Bad practice - Method with Boolean return type returns explicit

null java linear (0.125)

863 Bad practice - equals() method does not check for null argument java linear (0.125)

864 Bad practice - toString method may return null java linear (0.125)

865 Correctness - A collection is added to itself java linear (0.125)

866

 Correctness - A parameter is dead upon entry to a method but

overwritten java linear (0.125)

J.H. Hegeman – Master Thesis – Unrestricted version 144

867 Correctness - An apparent infinite loop java linear (0.125)

868 Correctness - An apparent infinite recursive loop java linear (0.125)

869 Correctness - Bitwise OR of signed byte value java linear (0.125)

870 Correctness - Bitwise add of signed byte value java linear (0.125)

871 Correctness - Check for sign of bitwise operation java linear (0.125)

872 Correctness - Check to see if ((...) & 0) == 0 java linear (0.125)

873 Correctness - Explicit annotation inconsistent with use java linear (0.125)

874 Correctness - Explicit annotation inconsistent with use java linear (0.125)

875

 Correctness - Futile attempt to change max pool size of

ScheduledThreadPoolExecutor java linear (0.125)

876

 Correctness - Nonsensical self computation involving a field (e.g.,

x & x) java linear (0.125)

877

 Correctness - Nonsensical self computation involving a variable

(e.g., x & x) java linear (0.125)

878 Correctness - Null value is guaranteed to be dereferenced java linear (0.125)

879

 Correctness - Null pointer dereference in method on exception

path java linear (0.125)

880 Correctness - Null pointer dereference java linear (0.125)

881

 Correctness - Number of format-string arguments does not

correspond to number of placeholders java linear (0.125)

882 Correctness - Possible null pointer dereference java linear (0.125)

883

 Correctness - Possible null pointer dereference in method on

exception path java linear (0.125)

884 Correctness - Read of unwritten field java linear (0.125)

885 Correctness - Repeated conditional tests java linear (0.125)

886 Correctness - Self comparison of value with itself java linear (0.125)

887 Correctness - Self comparison of field with itself java linear (0.125)

888 Correctness - Self assignment of field java linear (0.125)

889

 Correctness - Return value of putIfAbsent ignored, value passed to

putIfAbsent reused java linear (0.125)

890

 Correctness - Signature declares use of unhashable class in hashed

construct java linear (0.125)

891

 Correctness - Static Thread.interrupted() method invoked on

thread instance java linear (0.125)

892
 Correctness - Value annotated as carrying a type qualifier used

where a value that must not carry that qualifier is required java linear (0.125)

893

 Correctness - Value annotated as never carrying a type qualifier

used where value carrying that qualifier is required java linear (0.125)

894

 Correctness - Value is null and guaranteed to be dereferenced on

exception path java linear (0.125)

895

 Correctness - equals method overrides equals in superclass and

may not be symmetric java linear (0.125)

896

 Correctness - equals method compares class names rather than

class objects java linear (0.125)

897 Correctness - equals method always returns true java linear (0.125)

898 Correctness - equals method always returns false java linear (0.125)

899 Correctness - hasNext method invokes next java linear (0.125)

900 Correctness - instanceof will always return false java linear (0.125)

901 Dead store due to switch statement fall through java linear (0.125)

902 Dodgy - Complicated, subtle or wrong increment in for-loop java linear (0.125)

903 Dodgy - Computation of average could overflow java linear (0.125)

904 Dodgy - Dereference of the result of readLine() without nullcheck java linear (0.125)

905 Dodgy - Double assignment of local variable java linear (0.125)

906 Dodgy - Immediate dereference of the result of readLine() java linear (0.125)

907

 Dodgy - Method discards result of readLine after checking if it is

nonnull java linear (0.125)

908 Dodgy - Method uses the same code for two branches java linear (0.125)

909 Dodgy - Method uses the same code for two switch clauses java linear (0.125)

910 Dodgy - Possible null pointer dereference due to return value of java linear (0.125)

J.H. Hegeman – Master Thesis – Unrestricted version 145

called method

911

 Dodgy - Possible null pointer dereference on path that might be

infeasible java linear (0.125)

912 Dodgy - Potentially dangerous use of non-short-circuit logic java linear (0.125)

913 Dodgy - Self assignment of local variable java linear (0.03)

914 Dodgy - instanceof will always return true java linear (0.125)

915 DoNotIgnoreMethodResultRule cs linear (0.125)

916 BadRecursiveInvocationRule cs linear (0.125)

917 ToStringShouldNotReturnNullRule cs linear (0.125)

918 CloneMethodShouldNotReturnNullRule cs linear (0.125)

919 UseObjectDisposedExceptionRule cs linear (0.125)

920 EqualsShouldHandleNullArgRule cs linear (0.125)

921 CheckParametersNullityInVisibleMethodsRule cs linear (0.03)

922 DisposableFieldsShouldBeDisposedRule cs linear (0.125)

923 DisposableTypesShouldHaveFinalizerRule cs linear (0.125)

924 GetEntryAssemblyMayReturnNullRule cs constant_resource (0.125)

925 UseValueInPropertySetterRule cs linear (0.03)

926 AvoidAlwaysNullFieldRule cs linear (0.03)

927 ProvideValidXPathExpressionRule cs linear (0.125)

928 ProvideValidXmlStringRule cs linear (0.125)

929 ReviewCastOnIntegerMultiplicationRule cs linear (0.125)

930 ReviewCastOnIntegerDivisionRule cs linear (0.125)

931 ReviewUseOfModuloOneOnIntegersRule cs linear (0.125)

932

 S
y

n
ch

ro
n

iza
tio

n
 re

la
te

d

Double Checked Locking java linear (0.375)

933 Use Notify All Instead Of Notify java linear (0.375)

934 Avoid Thread Group java linear (0.375)

935 Close Resource java linear (0.125)

936 Do Not Use Threads java linear (0.125)

937 Double checked locking java linear (0.375)

938 Non Thread Safe Singleton java linear (0.375)

939 Unsynchronized Static Date Formatter java linear (0.125)

940 Multithreaded correctness - Call to static Calendar java linear (0.125)

941 Multithreaded correctness - Call to static DateFormat java linear (0.125)

942

 Multithreaded correctness - Class's readObject() method is

synchronized java linear (0.125)

943

 Multithreaded correctness - Class's writeObject() method is

synchronized but nothing else is java linear (0.125)

944 Multithreaded correctness - Condition.await() not in loop java linear (0.125)

945 Multithreaded correctness - Constructor invokes Thread.start() java linear (0.125)

946 Multithreaded correctness - Empty synchronized block java linear (0.125)

947

 Multithreaded correctness - Field not guarded against concurrent

access java linear (0.125)

948 Multithreaded correctness - Inconsistent synchronization java linear (0.125)

949 Multithreaded correctness - Inconsistent synchronization java linear (0.125)

950

 Multithreaded correctness - Incorrect lazy initialization and

update of static field java linear (0.125)

951

 Multithreaded correctness - Incorrect lazy initialization of static

field java linear (0.125)

952

 Multithreaded correctness - Invokes run on a thread (did you

mean to start it instead?) java linear (0.125)

953

 Multithreaded correctness - Method calls Thread.sleep() with a

lock held java linear (0.125)

954

 Multithreaded correctness - Method does not release lock on all

exception paths java linear (0.125)

955

 Multithreaded correctness - Method does not release lock on all

paths java linear (0.125)

956 Multithreaded correctness - Method spins on field java linear (0.125)

J.H. Hegeman – Master Thesis – Unrestricted version 146

957

 Multithreaded correctness - Method synchronizes on an updated

field java linear (0.125)

958 Multithreaded correctness - Mismatched notify() java linear (0.125)

959 Multithreaded correctness - Mismatched wait() java linear (0.125)

960 Multithreaded correctness - Monitor wait() called on Condition java linear (0.125)

961 Multithreaded correctness - Mutable servlet field java linear (0.125)

962 Multithreaded correctness - Naked notify java linear (0.125)

963 Multithreaded correctness - Possible double check of field java linear (0.125)

964 Multithreaded correctness - Static Calendar java linear (0.125)

965 Multithreaded correctness - Static DateFormat java linear (0.125)

966

 Multithreaded correctness - Sychronization on getClass rather

than class literal java linear (0.125)

967 Multithreaded correctness - Wait with two locks held java linear (0.125)

968 Multithreaded correctness - Wait not in loop java linear (0.125)

969 Multithreaded correctness - Using notify() rather than notifyAll() java linear (0.125)

970

 Multithreaded correctness - Unsynchronized get method,

synchronized set method java linear (0.125)

971 Multithreaded correctness - Unconditional wait java linear (0.125)

972

 Multithreaded correctness - Synchronize and null check on the

same field. java linear (0.125)

973

 Multithreaded correctness - Synchronization performed on

java.util.concurrent Lock java linear (0.125)

974

 Multithreaded correctness - Synchronization on interned String

could lead to deadlock java linear (0.125)

975

 Multithreaded correctness - Synchronization on field in futile

attempt to guard that field java linear (0.125)

976

 Multithreaded correctness - Synchronization on boxed primitive

values java linear (0.125)

977

 Multithreaded correctness - Synchronization on boxed primitive

could lead to deadlock java linear (0.125)

978

 Multithreaded correctness - Synchronization on Boolean could

lead to deadlock java linear (0.125)

979

 Bad practice - Certain swing methods needs to be invoked in

Swing thread java linear (0.125)

980
 Dodgy - Class exposes synchronization and semaphores in its

public interface java linear (0.125)

981 DoNotUseThreadStaticWithInstanceFieldsRule cs linear (0.125)

982 DoNotUseMethodImplOptionsSynchronizedRule cs linear (0.125)

983 DoubleCheckLockingRule cs linear (0.125)

984 DoNotLockOnWeakIdentityObjectsRule cs linear (0.125)

985 DoNotLockOnThisOrTypesRule cs linear (0.125)

986 ReviewLockUsedOnlyForOperationsOnVariablesRule cs linear (0.125)

987 UseSTAThreadAttributeOnSWFEntryPointsRule cs linear (0.125)

988 WriteStaticFieldFromInstanceMethodRule cs linear (0.03)

989 NonConstantStaticFieldsShouldNotBeVisibleRule cs linear (0.125)

990 COM registration methods should be matched (FxCop10) cs linear (0.125)

991

T
e

sta
b

ility

In
te

g
ra

tio
n

 le
v

e
l

Rethrow to preserve stack details (FxCop10) cs linear (0.03)

992 Instantiate argument exceptions correctly (FxCop10) cs linear (0.125)

993 Implement standard exception constructors cs linear (0.125)

994 Exceptions should be public cs linear (0.125)

995 Do not raise reserved exception types (FxCop10) cs linear (0.125)

996 Do not raise exceptions in unexpected locations cs linear (0.125)

997 Do not raise exceptions in exception clauses (FxCop10) cs linear (0.125)

998 Do not catch general exception types cs linear (0.125)

999 Illegal Throws java linear (0.375)

1000 Bad practice - Method might drop exception java linear (0.125)

1001

 Bad practice - Method may fail to close database resource on

exception java linear (0.125)

J.H. Hegeman – Master Thesis – Unrestricted version 147

1002 Bad practice - Dubious catching of IllegalMonitorStateException java linear (0.125)

1003 Illegal Catch java linear (0.125)

1004

U
n

it le
v

e
l

Parameter Number java linear (0.125)

1005 Cyclomatic Complexity java linear (0.375)

1006 NPath Complexity java linear (0.375)

1007 Code size - cyclomatic complexity java linear (0.375)

1008 Exception As Flow Control java linear (0.125)

1009 Excessive Parameter List java linear (0.125)

1010 NPath complexity java linear (0.125)

1011 Correctness - TestCase implements a non-static suite method java linear (0.03)

1012 Correctness - TestCase has no tests java linear (0.03)

1013

 Correctness - TestCase defines tearDown that doesn't call

super.tearDown() java linear (0.03)

1014

 Correctness - TestCase defines setUp that doesn't call

super.setUp() java linear (0.03)

1015 Correctness - TestCase declares a bad suite method java linear (0.03)

1016 AvoidLongMethodsRule cs linear (0.375)

1017 AvoidLargeClassesRule cs linear (0.375)

1018 AvoidLargeNumberOfLocalVariablesRule cs linear (0.125)

1019 AvoidLargeStructureRule cs linear (0.375)

1020 AvoidLongParameterListsRule cs linear (0.125)

1021 AvoidComplexMethodsRule cs linear (0.375)

1022 Duplicated blocks java linear (0.125)

1023 Duplicated blocks cs linear (0.125)

1024 Replace repetitive arguments with params array cs linear (0.03)

1025 AvoidSwitchStatementsRule cs linear (0.375)

1026 Insufficient line coverage by unit tests cs linear (0.01)

1027 Insufficient line coverage by unit tests java linear (0.01)

1028 Insufficient branch coverage by unit tests cs linear (0.05)

1029 Insufficient branch coverage by unit tests java linear (0.05)

J.H. Hegeman – Master Thesis – Unrestricted version 148

J.H. Hegeman – Master Thesis – Unrestricted version 149

J. List of installed software on the PoC VM

J.H. Hegeman – Master Thesis – Unrestricted version 150

J.H. Hegeman – Master Thesis – Unrestricted version 151

K. Project identifier list [CONFIDENTIAL]

The unrestricted version of this thesis does not contain this confidential appendix.

